Bimetallic Nanoparticles for optimizing CMOS integrated SnO2 gas sensor devices

被引:0
|
作者
Mutinati, Giorgio C. [1 ]
Brunet, Elise [1 ]
Yurchenko, Olena [2 ]
Laubender, Elmar [2 ]
Urban, Gerald [2 ]
Koeck, Anton [3 ]
Steinhauer, Stephan [3 ]
Siegert, Joerg [4 ]
Rohracher, Karl [4 ]
Schrank, Franz [4 ]
Schrems, Martin [4 ]
机构
[1] AIT Austrian Inst Technol GmbH, A-1220 Vienna, Austria
[2] Univ Freiburg, Freiburg Mat Res Ctr, D-79085 Freiburg, Germany
[3] Mat Ctr Leoben Forsch GmbH MCL, A-8700 Leoben, Austria
[4] Ams AG, A-8141 Unterpremstatten, Austria
关键词
nanotechnology; bimetallic nanoparticles; SnO2 nanocrystalline films; gas sensors; micro-hotplates; CMOS integration; 3D integration; CARBON-MONOXIDE; METAL-OXIDES; OXIDATION; FUEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present gas sensor devices based on ultrathin SnO2 films, which are integrated on CMOS fabricated micro-hotplate (mu hp) chips. Bimetallic nanoparticles (NPs) such as PdAu, PtAu, and PdPt have been synthesized for optimizing the sensing performance of these sensors. We demonstrate that functionalization of nanocrystalline SnO2 gas sensing films with PdAu-NPs leads to a strongly improved sensitivity to the toxic gas carbon monoxide (CO) while the cross sensitivity to humidity is almost completely suppressed. We conclude that specific functionalization of CMOS integrated SnO2 thin film gas sensors with different types of NPs is a powerful strategy towards sensor arrays capable for distinguishing several target gases. Such CMOS integrated arrays are highly promising candidates for realizing smart multi-parameter sensing devices for the consumer market.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 50 条
  • [31] At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor
    Srivastava, Vibha
    Jain, Kiran
    MATERIALS LETTERS, 2016, 169 : 28 - 32
  • [32] Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions
    Nasirian, Shahruz
    Moghaddam, Hossain Milani
    APPLIED SURFACE SCIENCE, 2015, 328 : 395 - 404
  • [33] Pulse-Driven Micro Gas Sensor Fitted with Clustered Pd/SnO2 Nanoparticles
    Suematsu, Koichi
    Shin, Yuka
    Ma, Nan
    Oyama, Tokiharu
    Sasaki, Miyuki
    Yuasa, Masayoshi
    Kida, Tetsuya
    Shimanoe, Kengo
    ANALYTICAL CHEMISTRY, 2015, 87 (16) : 8407 - 8415
  • [34] Gas sensing properties of SnO2 nanoparticles mixed with gold nanoparticles
    Borhaninia, A.
    Nikfarjam, A.
    Salehifar, N.
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (08) : 1777 - 1784
  • [35] Nano SnO2 based gas sensor for formaldehyde gas detection
    Zeng, Wen
    Liu, Tian-Mo
    Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2009, 7 (05): : 387 - 391
  • [36] Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor
    Hong, Ping
    Li, Yuxiu
    Zhang, Xu
    Peng, Sijia
    Zhao, Rongjun
    Yang, Yue
    Wang, Zidong
    Zou, Tong
    Wang, Yude
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (15) : 14325 - 14334
  • [37] SNO2 GAS SENSOR - EFFECT OF SO2 TREATMENT ON THE ELECTRICAL-PROPERTIES OF SNO2
    LALAUZE, R
    LETHIESSE, JC
    PIJOLAT, C
    SOUSTELLE, M
    SOLID STATE IONICS, 1984, 12 (MAR) : 453 - 457
  • [38] Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor
    Ping Hong
    Yuxiu Li
    Xu Zhang
    Sijia Peng
    Rongjun Zhao
    Yue Yang
    Zidong Wang
    Tong Zou
    Yude Wang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 14325 - 14334
  • [39] Structural changes on SnO2 nanoparticles for gas sensor applications induced by calcination treatments and grinding
    Dieguez, A
    Alay, JL
    Kappler, J
    Romano-Rodriguez, A
    Vila, A
    Barsan, N
    Weimar, U
    Gopel, W
    Morante, JR
    SURFACE-CONTROLLED NANOSCALE MATERIALS FOR HIGH-ADDED-VALUE APPLICATIONS, 1998, 501 : 53 - 58
  • [40] Plasmonic-based SnO2 gas sensor with in-void segregated silver nanoparticles
    Gaiduk, P. I.
    Chevallier, J.
    Prokopyev, S. L.
    Larsen, A. Nylandsted
    MICROELECTRONIC ENGINEERING, 2014, 125 : 68 - 72