Entropy and Wigner functions

被引:89
|
作者
Manfredi, G
Feix, MR
机构
[1] Univ Henri Poincare, Phys Milieux Ionises Lab, F-54506 Vandoeuvre Les Nancy, France
[2] Ecole Mines Nantes, Subatech, F-44307 Nantes 3, France
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevE.62.4665
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.
引用
收藏
页码:4665 / 4674
页数:10
相关论文
共 50 条
  • [41] Semiclassical expansion of Wigner functions
    Pulvirenti, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
  • [42] Semiclassical propagation of Wigner functions
    Dittrich, T.
    Gomez, E. A.
    Pachon, L. A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (21):
  • [43] Fluctuations of functions of Wigner matrices
    Erdos, Laszlo
    Schroder, Dominik
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [44] On the failure of subadditivity of the Wigner-Yanase entropy
    Seiringer, Robert
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (03) : 285 - 288
  • [45] Wigner separability entropy and complexity of quantum dynamics
    Benenti, Giuliano
    Carlo, Gabriel G.
    Prosen, Tomaz
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [46] Mapping Wigner distribution functions into semiclassical distribution functions
    Bund, GW
    Tijero, MC
    PHYSICAL REVIEW A, 2000, 61 (05): : 8
  • [47] An optical entropy approach to the Wigner distribution function
    Torroba, R
    Climent, V
    Andres, P
    OPTIK, 1996, 103 (04): : 148 - 150
  • [48] An optical entropy approach to the Wigner distribution function
    Torroba, R.
    Climent, V.
    Andres, P.
    Optik (Jena), 1996, 103 (04): : 148 - 150
  • [49] Wigner functions for Helmholtz wave fields
    Centro de Ciencias Físicas, Univ. Nac. Auton. de México, Apartado Postal 48-3, 62251 Cuernavaca, Mexico
    不详
    J Opt Soc Am A, 10 (2476-2487):
  • [50] Wigner functions and separability for finite systems
    Pittenger, AO
    Rubin, MH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (26): : 6005 - 6036