Entropy and Wigner functions

被引:89
|
作者
Manfredi, G
Feix, MR
机构
[1] Univ Henri Poincare, Phys Milieux Ionises Lab, F-54506 Vandoeuvre Les Nancy, France
[2] Ecole Mines Nantes, Subatech, F-44307 Nantes 3, France
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 04期
关键词
D O I
10.1103/PhysRevE.62.4665
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.
引用
收藏
页码:4665 / 4674
页数:10
相关论文
共 50 条
  • [31] Propagation algorithms for Wigner functions
    Zhong, Minyi
    Gross, Herbert
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2016, 12
  • [32] WIGNER FUNCTIONS OF QUADRATIC SYSTEMS
    AKHUNDOVA, EA
    DODONOV, VV
    MANKO, VI
    PHYSICA A, 1982, 115 (1-2): : 215 - 231
  • [33] Wigner functions for evanescent waves
    Petruccelli, Jonathan C.
    Tian, Lei
    Oh, Se Baek
    Barbastathis, George
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (09) : 1927 - 1938
  • [34] WIGNER FUNCTIONS IN THE PAUL TRAP
    SCHRADE, G
    MANKO, VI
    SCHLEICH, WP
    GLAUBER, RJ
    QUANTUM AND SEMICLASSICAL OPTICS, 1995, 7 (03): : 307 - 325
  • [35] On the propagation of semiclassical Wigner functions
    Rios, PPD
    de Almeida, AMO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11): : 2609 - 2617
  • [36] Wigner functions of s waves
    Dahl, J. P.
    Varro, S.
    Wolf, A.
    Schleich, W. P.
    PHYSICAL REVIEW A, 2007, 75 (05)
  • [37] Decoherence of semiclassical Wigner functions
    de Almeida, AMO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01): : 67 - 86
  • [38] Wigner functions and bond orders
    Schmider, Hartmut
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2006, 220 (07): : 859 - 884
  • [39] Semiclassical analysis of Wigner functions
    Veble, G
    Robnik, M
    Romanovski, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4151 - 4168
  • [40] Entanglement, disentanglement and Wigner functions
    Hardy, Y
    Steeb, WH
    Stoop, R
    PHYSICA SCRIPTA, 2004, 69 (03) : 166 - 169