AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS

被引:0
|
作者
Chen, Yuting [1 ]
Cao, Mingyuan [2 ]
Yang, Yueting [2 ]
Huang, Qingdao [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Beihua Univ, Sch Math & Stat, Jilin 132013, Jilin, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 03期
关键词
Symmetric tensors; Generalized eigenvalues; Trust-region; Global convergence; Local quadratic convergence; EXTREME Z-EIGENVALUES; MULTILINEAR-ALGEBRA; RANK-1;
D O I
10.4208/jcm.2001-m2019-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For symmetric tensors, computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere. In this paper, we present an adaptive trust-region method for generalized eigenvalues of symmetric tensors. One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance. The other one is that a projection scheme is used to ensure the feasibility of all iteratives. Global convergence and local quadratic convergence of our algorithm are established, respectively. The preliminary numerical results show the efficiency of the proposed algorithm.
引用
收藏
页码:358 / 374
页数:17
相关论文
共 50 条
  • [1] A FEASIBLE TRUST-REGION METHOD FOR CALCULATING EXTREME Z-EIGENVALUES OF SYMMETRIC TENSORS
    Hao, Chun-Lin
    Cui, Chun-Feng
    Dai, Yu-Hong
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (02): : 291 - 307
  • [2] A self-adaptive trust region method for extreme B-eigenvalues of symmetric tensors
    Cao, Mingyuan
    Huang, Qingdao
    Yang, Yueting
    NUMERICAL ALGORITHMS, 2019, 81 (02) : 407 - 420
  • [3] An implicit Riemannian Trust-Region method for the symmetric generalized eigenproblem
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 210 - 217
  • [4] THE CONVERGENCE OF THE GENERALIZED LANCZOS TRUST-REGION METHOD FOR THE TRUST-REGION SUBPROBLEM
    Jia, Zhongxiao
    Wang, Fa
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 887 - 914
  • [5] ON THE GENERALIZED LANCZOS TRUST-REGION METHOD
    Zhang, Lei-Hong
    Shen, Chungen
    Li, Ren-Cang
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 2110 - 2142
  • [6] A consistently adaptive trust-region method
    Hamad, Fadi
    Hinder, Oliver
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] On convergence of the generalized Lanczos trust-region method for trust-region subproblemsOn convergence of the generalized Lanczos trust-region method...B. Feng, G. Wu
    Bo Feng
    Gang Wu
    Advances in Computational Mathematics, 2025, 51 (1)
  • [8] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    Journal of Scientific Computing, 2023, 96
  • [9] Adaptive Trust-Region Method on Riemannian Manifold
    Zhao, Shimin
    Yan, Tao
    Wang, Kai
    Zhu, Yuanguo
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [10] BFGS trust-region method for symmetric nonlinear equations
    Yuan, Gonglin
    Lu, Xiwen
    Wei, Zengxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (01) : 44 - 58