AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS

被引:0
|
作者
Chen, Yuting [1 ]
Cao, Mingyuan [2 ]
Yang, Yueting [2 ]
Huang, Qingdao [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Beihua Univ, Sch Math & Stat, Jilin 132013, Jilin, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 03期
关键词
Symmetric tensors; Generalized eigenvalues; Trust-region; Global convergence; Local quadratic convergence; EXTREME Z-EIGENVALUES; MULTILINEAR-ALGEBRA; RANK-1;
D O I
10.4208/jcm.2001-m2019-0017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For symmetric tensors, computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere. In this paper, we present an adaptive trust-region method for generalized eigenvalues of symmetric tensors. One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance. The other one is that a projection scheme is used to ensure the feasibility of all iteratives. Global convergence and local quadratic convergence of our algorithm are established, respectively. The preliminary numerical results show the efficiency of the proposed algorithm.
引用
收藏
页码:358 / 374
页数:17
相关论文
共 50 条
  • [41] THE MULTIVARIATE EIGENVALUES OF SYMMETRIC TENSORS
    Zhou, Anwa
    Ni, Yangyang
    Fan, Jinyan
    SIAM Journal on Matrix Analysis and Applications, 2024, 45 (04) : 1954 - 1977
  • [42] Trust-Region Adaptive Frequency for Online Continual Learning
    Yajing Kong
    Liu Liu
    Maoying Qiao
    Zhen Wang
    Dacheng Tao
    International Journal of Computer Vision, 2023, 131 : 1825 - 1839
  • [43] Outer Trust-Region Method for Constrained Optimization
    Ernesto G. Birgin
    Emerson V. Castelani
    André L. M. Martinez
    J. M. Martínez
    Journal of Optimization Theory and Applications, 2011, 150
  • [44] Trust-Region Adaptive Frequency for Online Continual Learning
    Kong, Yajing
    Liu, Liu
    Qiao, Maoying
    Wang, Zhen
    Tao, Dacheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (07) : 1825 - 1839
  • [45] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [46] A SUBSPACE MINIMIZATION METHOD FOR THE TRUST-REGION STEP
    Erway, Jennifer B.
    Gill, Philip E.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1439 - 1461
  • [47] A retrospective trust-region method for unconstrained optimization
    Bastin, Fabian
    Malmedy, Vincent
    Mouffe, Melodie
    Toint, Philippe L.
    Tomanos, Dimitri
    MATHEMATICAL PROGRAMMING, 2010, 123 (02) : 395 - 418
  • [48] A BFGS trust-region method for nonlinear equations
    Yuan, Gonglin
    Wei, Zengxin
    Lu, Xiwen
    COMPUTING, 2011, 92 (04) : 317 - 333
  • [49] A retrospective trust-region method for unconstrained optimization
    Fabian Bastin
    Vincent Malmedy
    Mélodie Mouffe
    Philippe L. Toint
    Dimitri Tomanos
    Mathematical Programming, 2010, 123 : 395 - 418
  • [50] Outer Trust-Region Method for Constrained Optimization
    Birgin, Ernesto G.
    Castelani, Emerson V.
    Martinez, Andre L. M.
    Martinez, J. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (01) : 142 - 155