State space methods for phase amplitude coupling analysis

被引:9
|
作者
Soulat, Hugo [1 ,2 ,5 ]
Stephen, Emily P. [3 ]
Beck, Amanda M. [4 ]
Purdon, Patrick L. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Boston Univ, Dept Math & Stat, Boston, MA USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[5] UCL, Gatsby Computat Neurosci Unit, London, England
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
LOCAL-FIELD POTENTIALS; PRIMARY MOTOR CORTEX; SUBTHALAMIC NUCLEUS; GENERAL-ANESTHESIA; WORKING-MEMORY; ALTERED STATES; HIGH-FREQUENCY; OSCILLATIONS; GAMMA; BRAIN;
D O I
10.1038/s41598-022-18475-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Phase-amplitude coupling supports phase coding in human ECoG
    Watrous, Andrew J.
    Deuker, Lorena
    Fell, Juergen
    Axmacher, Nikolai
    ELIFE, 2015, 4
  • [42] A neural mass model of phase-amplitude coupling
    Chehelcheraghi, Mojtaba
    Nakatani, Chie
    Steur, Erik
    van Leeuwen, Cees
    BIOLOGICAL CYBERNETICS, 2016, 110 (2-3) : 171 - 192
  • [43] Elevated phase amplitude coupling as a depression biomarker in epilepsy
    Young, James J.
    Chan, Andy Ho Wing
    Jette, Nathalie
    Bender, Heidi A.
    Saad, Adam E.
    Saez, Ignacio
    Panov, Fedor
    Ghatan, Saadi
    Yoo, Ji Yeoun
    Singh, Anuradha
    Fields, Madeline C.
    Marcuse, Lara V.
    Mayberg, Helen S.
    EPILEPSY & BEHAVIOR, 2024, 152
  • [44] A Precise Annotation of Phase-Amplitude Coupling Intensity
    Cheng, Ning
    Li, Qun
    Xu, Xiaxia
    Zhang, Tao
    PLOS ONE, 2016, 11 (10):
  • [45] The Detection of Phase Amplitude Coupling during Sensory Processing
    Seymour, Robert A.
    Rippon, Gina
    Kessler, Klaus
    FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [46] The bispectrum and its relationship to phase-amplitude coupling
    Kovach, Christopher K.
    Oya, Hiroyuki
    Kawasaki, Hiroto
    NEUROIMAGE, 2018, 173 : 518 - 539
  • [47] Thalamocortical control of propofol phase-amplitude coupling
    Soplata, Austin E.
    McCarthy, Michelle M.
    Sherfey, Jason
    Lee, Shane
    Purdon, Patrick L.
    Brown, Emery N.
    Kopell, Nancy
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (12)
  • [48] Phase-Amplitude Coupling in Spontaneous Mouse Behavior
    Thengone, Daniel
    Gagnidze, Khatuna
    Pfaff, Donald
    Proekt, Alex
    PLOS ONE, 2016, 11 (09):
  • [49] Phase-amplitude coupling in neuronal oscillator networks
    Qin, Yuzhen
    Menara, Tommaso
    Bassett, Danielle S.
    Pasqualetti, Fabio
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [50] A Canonical Circuit for Generating Phase-Amplitude Coupling
    Onslow, Angela C. E.
    Jones, Matthew W.
    Bogacz, Rafal
    PLOS ONE, 2014, 9 (08):