State space methods for phase amplitude coupling analysis

被引:9
|
作者
Soulat, Hugo [1 ,2 ,5 ]
Stephen, Emily P. [3 ]
Beck, Amanda M. [4 ]
Purdon, Patrick L. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Boston Univ, Dept Math & Stat, Boston, MA USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[5] UCL, Gatsby Computat Neurosci Unit, London, England
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
LOCAL-FIELD POTENTIALS; PRIMARY MOTOR CORTEX; SUBTHALAMIC NUCLEUS; GENERAL-ANESTHESIA; WORKING-MEMORY; ALTERED STATES; HIGH-FREQUENCY; OSCILLATIONS; GAMMA; BRAIN;
D O I
10.1038/s41598-022-18475-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A neural mass model of phase–amplitude coupling
    Mojtaba Chehelcheraghi
    Chie Nakatani
    Erik Steur
    Cees van Leeuwen
    Biological Cybernetics, 2016, 110 : 171 - 192
  • [22] Computing Phase Amplitude Coupling in EEGLAB: PACTools
    Martinez-Cancino, Ramon
    Delorme, Arnaud
    Kreutz-Delgado, Kenneth
    Makeig, Scott
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 387 - 394
  • [23] Multitaper estimates of phase-amplitude coupling
    Lepage, Kyle Q.
    Fleming, Cavan N.
    Witcher, Mark
    Vijayan, Sujith
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (05)
  • [24] Analysis of electrochemical noise data with phase space methods
    Aldrich, C.
    Qi, B. C.
    Botha, P. J.
    MINERALS ENGINEERING, 2006, 19 (14) : 1402 - 1409
  • [25] Phase-amplitude coupling during auditory steady-state stimulation: a methodological review
    Mockevicius, Aurimas
    Griskova-Bulanova, Inga
    REVIEWS IN THE NEUROSCIENCES, 2025,
  • [26] Prediction of Postoperative Delirium Using Resting-State EEG Phase-Amplitude Coupling
    Arai, Naohiro
    Miyazaki, Takahiro
    Nakajima, Shinichiro
    Moriyama, Sotaro
    Takebayashi, Minoru
    Boku, Shuken
    Uchida, Hiroyuki
    Mimura, Masaru
    Noda, Yoshihiro
    NEUROPSYCHOPHARMACOLOGY, 2024, 49 : 122 - 123
  • [27] Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
    Zobay, Oliver
    Adjamian, Peyman
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [28] Controlling quantum interference in phase space with amplitude
    Yinghong Xue
    Tingyu Li
    Katsuyuki Kasai
    Yoshiko Okada-Shudo
    Masayoshi Watanabe
    Yun Zhang
    Scientific Reports, 7
  • [29] Controlling quantum interference in phase space with amplitude
    Xue, Yinghong
    Li, Tingyu
    Kasai, Katsuyuki
    Okada-Shudo, Yoshiko
    Watanabe, Masayoshi
    Zhang, Yun
    SCIENTIFIC REPORTS, 2017, 7
  • [30] Implementation of Phase-to-Amplitude Coupling Analysis Algorithms in Deep Brain Stimulation Devices
    Dellavale, D.
    Kock, M.
    Blume, H.
    Alam, M.
    Schwabe, K.
    Krauss, J. K.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S131 - S131