Improving the performance of direct methanol fuel cells by implementing multilayer membranes blended with cellulose nanocrystals

被引:34
|
作者
Hosseinpour, Milad [1 ]
Sahoo, Madhumita [1 ]
Perez-Page, Maria [1 ]
Baylis, Sebastian Ross [1 ]
Patel, Faisal [1 ]
Holmes, Stuart M. [1 ]
机构
[1] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Methanol crossover; Multilayer membrane; Cellulose nanocrystals; Direct methanol fuel cells; Proton conductivity; COMPOSITE MEMBRANES; NANOCOMPOSITE MEMBRANES; GRAPHENE OXIDE; PROTON; TRANSPORT; NAFION(R); CROSSOVER; DMFC;
D O I
10.1016/j.ijhydene.2019.09.194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methanol crossover through the proton exchange membranes of a direct methanol fuel cell (DMFC) significantly affects its performance and efficiency. Low methanol permeability and high proton conductivity of the membrane is desired for optimum performance. In this work, a multilayer (ML) membrane configuration prepared by a simple pressing technique is employed with and without the incorporation of sprayed cellulose nanocrystals (CNC) to achieve enhanced membrane properties. Assembled multilayer electrolytes show 19% enhanced maximum power density, while the addition of 1.5 wt% CNC (wt % of total final membrane) further improves the performance, giving a 38% better performance compared to standard Nafion N115. Methanol flux density and electrochemical impedance measurements attribute these improvement to the -20% enhancement in the proton conductivity for the multilayer membrane which is enhanced further by an 11% reduction in methanol crossover when the cellulose nanocrystals are added. (C) 2019 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:30409 / 30419
页数:11
相关论文
共 50 条
  • [21] A novel anode catalyst layer with multilayer and pore structure for improving the performance of a direct methanol fuel cell
    Liu, Guicheng
    Wang, Meng
    Wang, Yituo
    Tian, Zhe
    Wang, Xindong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (11) : 1313 - 1317
  • [22] Effect of Sulfonation Degree on Performance of Proton Exchange Membranes for Direct Methanol Fuel Cells
    Xiang Zheng
    Zhao Xueping
    Ge Junjie
    Ma Shuhua
    Zhang Yuwei
    Na Hui
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2016, 32 (02) : 291 - 295
  • [23] Clay powder in polymer composite membranes enhanced the performance of direct methanol fuel cells
    Karim, Md. Anwarul
    Dipti, Sharmin Sultana
    Elahi, Mohammad Mahfuz Enam
    POLYMERS & POLYMER COMPOSITES, 2024, 32
  • [24] Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells
    Zheng Xiang
    Xueping Zhao
    Junjie Ge
    Shuhua Ma
    Yuwei Zhang
    Hui Na
    Chemical Research in Chinese Universities, 2016, 32 : 291 - 295
  • [25] Direct methanol fuel cell performance of sulfonated polyrimide membranes
    Hu, Zhaoxia
    Ogou, Takahiro
    Yoshino, Makoto
    Yamada, Otoo
    Kita, Hidetoshi
    Okamoto, Ken-Ichi
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 674 - 682
  • [26] Organic/inorganic hybrid membranes for direct methanol fuel cells
    Kim, HaeKyoung
    Chang, Hyuk
    JOURNAL OF MEMBRANE SCIENCE, 2007, 288 (1-2) : 188 - 194
  • [27] A review of polymer electrolyte membranes for direct methanol fuel cells
    Neburchilov, Vladimir
    Martin, Jonathan
    Wang, Haijiang
    Zhang, Jiujun
    JOURNAL OF POWER SOURCES, 2007, 169 (02) : 221 - 238
  • [28] Chitosan-Heteropolyacid membranes for direct methanol fuel cells
    Di Franco, F.
    Burgio, G.
    Santamaria, M.
    REVUE DES COMPOSITES ET DES MATERIAUX AVANCES-JOURNAL OF COMPOSITE AND ADVANCED MATERIALS, 2018, 28 (02): : 141 - 147
  • [29] TIN MORDENITE MEMBRANES FOR DIRECT METHANOL FUEL-CELLS
    RAO, N
    ANDERSEN, TP
    GE, P
    SOLID STATE IONICS, 1994, 72 (pt 2) : 334 - 337
  • [30] Functionalized Silica Composite Membranes for Direct Methanol Fuel Cells
    Yun, S.
    Parrondo, J.
    Lo, C-P
    Ramani, V.
    POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 1633 - 1643