Direct methanol fuel cell performance of sulfonated polyrimide membranes

被引:19
|
作者
Hu, Zhaoxia [1 ]
Ogou, Takahiro [1 ]
Yoshino, Makoto [2 ]
Yamada, Otoo [1 ]
Kita, Hidetoshi [1 ]
Okamoto, Ken-Ichi [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7558611, Japan
[2] Fujitsu Labs Ltd, Device & Mat Labs, Kanagawa 2430197, Japan
关键词
Direct methanol fuel cells; Sulfanated polyimides; Methanol crossover; Water crossover; POLYMER ELECTROLYTE MEMBRANES; PROTON-EXCHANGE-MEMBRANES; ETHER KETONE) MEMBRANES; POLYIMIDE MEMBRANES; ELECTROOSMOTIC DRAG; DMFC PERFORMANCE; WATER STABILITY; CONDUCTIVITY; CROSSOVER; ACID;
D O I
10.1016/j.jpowsour.2009.06.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfonated polyimides (SPIs) derived from 1,4,5,8-naphthalene tetracarboxylic dianhydride, 4,4'-bis(4-aminophenoxy) biphenyl-3,3'-disulfonic acid and hydrophobic aromatic diamines showed the much lower methanol permeability and the lower proton conductivity than Nafion 112. The performance and the water and methanol crossover for direct methanol fuel cells (DMFCs) with the SPI membranes were investigated in comparison with Nafion membranes. The methanol and water fluxes increased significantly with increasing load current density for Nafion membranes but not for the SPI membranes, indicating that they were controlled by both the electro-osmotic drag and the molecular diffusion for the former but by only the molecular diffusion for the latter. These resulted in the much better DMFC performance for the SPIs than Nafion membranes especially at high methanol feed concentrations. The Faraday's efficiency and overall DMFC efficiency at 60 degrees C and 200 mA cm(-2) for SPI membrane with IEC of 1.51 meq g(-1) were 75% and 21 %, respectively, at 5 wt.% methanol feed concentration, and 36% and 9.5%, respectively, at 20 wt.% methanol concentration. They were about two times and three times higher at 5 wt.% and 20 wt.% methanol concentrations, respectively, than those for Nafion 112. The short-term durability test for 300 h at 60 degrees C revealed no deterioration in the DMFC performance. The SPI membranes have high potential for DMFC applications at mediate temperatures (40-80 degrees C). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:674 / 682
页数:9
相关论文
共 50 条
  • [1] Sulfonated poly(phthalazinones) membranes for direct methanol fuel cell
    Deng Hui-Ning
    Wang Yu-Xin
    ACTA PHYSICO-CHIMICA SINICA, 2007, 23 (02) : 187 - 191
  • [2] Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell
    Li, L
    Wang, YX
    JOURNAL OF MEMBRANE SCIENCE, 2005, 246 (02) : 167 - 172
  • [3] Sulfonated polysulfone and polyvinylidene fluoride membranes for direct methanol fuel cell
    Pianmanakij, Monchai
    Sirivat, Anuvat
    Siemanond, Kitipat
    JOURNAL OF BIOTECHNOLOGY, 2014, 185 : S119 - S119
  • [4] SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell
    Yang, Tao
    Liu, Chuntao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5666 - 5674
  • [5] Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell
    Woo, Y
    Oh, SY
    Kang, YS
    Jung, B
    JOURNAL OF MEMBRANE SCIENCE, 2003, 220 (1-2) : 31 - 45
  • [6] Proton exchange membranes made of sulfonated polyetheretherketone for direct methanol fuel cell
    Song, Hui-Ping
    Guo, Qiang
    Xu, Le-Bo
    Cailiao Kexue yu Gongyi/Material Science and Technology, 2008, 16 (03): : 362 - 365
  • [7] Preparation of Sulfonated PVA-TMSP Membranes for Direct Methanol Fuel Cell
    Haryadi
    Riniati
    Anisa, Sofiatun
    Utami, Ayu
    MAKARA JOURNAL OF SCIENCE, 2012, 16 (02) : 95 - 100
  • [8] Sulfonated PEEK ion exchange membranes for direct methanol fuel cell applications
    Moon, Go Young
    Rhim, Ji Won
    MACROMOLECULAR RESEARCH, 2007, 15 (04) : 379 - 384
  • [9] Performance and longevity of MEAs fabricated from sulfonated, crosslinked copolymer membranes in direct methanol fuel cell
    Fehervari, Agota F.
    Prevoir, Shawn J.
    Cherng, Jean-Pei
    Lin, Lifun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [10] Sulfonated peek ion exchange membranes for direct methanol fuel cell applications
    Go Young Moon
    Ji Won Rhim
    Macromolecular Research, 2007, 15 : 379 - 384