Pseudo-Rotations versus Rotations

被引:1
|
作者
Ginzburg, Viktor L. [2 ]
Gurel, Bapk Z. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] UC Santa Cruz, Dept Math, Santa Cruz, CA USA
关键词
FIXED-POINT THEOREM; STEENROD SQUARES; PERIODIC-ORBITS; INDEX; HOMOLOGY;
D O I
10.1112/jlms.12665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Continuing the study of Hamiltonian pseudo-rotations of projective spaces, we focus on the conjecture that the fixed-point data set (the actions and the linearized flows at one-periodic orbits) of a pseudo-rotation exactly matches that data for a suitable unique true rotation even though the two maps can have very different dynamics. We prove this conjecture in several instances, for example, for strongly non-degenerate pseudo-rotations of CP2 with some notable exceptions, which we call ghost pseudo-rotations. The existence of ghost pseudo-rotations is a completely open question. The conjecture is closely related to the properties of the action and index spectra of pseudo-rotations, and ghost pseudo-rotations, if they exist, satisfy all known restrictions on the fixed-point data for pseudo-rotations but these data are distinctly different from the data for any rotation. The main new ingredient of the proofs is purely combinatorial and of independent interest. This is the index divisibility theorem connecting the divisibility properties of the Conley-Zehnder index sequence for the iterates of a map with the properties of its spectrum.
引用
收藏
页码:3411 / 3449
页数:39
相关论文
共 50 条
  • [1] Pseudo-rotations and holomorphic curves
    Erman Çineli
    Viktor L. Ginzburg
    Başak Z. Gürel
    Selecta Mathematica, 2020, 26
  • [2] Pseudo-rotations of the open annulus
    F. Béguin
    S. Crovisier
    F. Le Roux
    Bulletin of the Brazilian Mathematical Society, 2006, 37 : 275 - 306
  • [3] Pseudo-rotations of the open annulus
    Beguin, F.
    Crovisier, S.
    Le Roux, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (02): : 275 - 306
  • [4] PSEUDO-ROTATIONS AND STEENROD SQUARES
    Shelukhin, Egor
    JOURNAL OF MODERN DYNAMICS, 2020, 16 : 289 - 304
  • [5] Pseudo-rotations and holomorphic curves
    Cineli, Erman
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (05):
  • [6] Hamiltonian pseudo-rotations of projective spaces
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    INVENTIONES MATHEMATICAE, 2018, 214 (03) : 1081 - 1130
  • [7] Hamiltonian pseudo-rotations of projective spaces
    Viktor L. Ginzburg
    Başak Z. Gürel
    Inventiones mathematicae, 2018, 214 : 1081 - 1130
  • [8] Pseudo-rotations and Steenrod squares revisited
    Shelukhin, Egor
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (04) : 1255 - 1261
  • [9] Some New Results on Three-Dimensional Rotations and Pseudo-Rotations
    Brezov, D. S.
    Mladenova, C. D.
    Mladenov, Ivailo M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2013, 1561 : 275 - 288
  • [10] THE STRONG CLOSING LEMMA AND HAMILTONIAN PSEUDO-ROTATIONS
    Cineli, Erman
    Seyfaddini, Sobhan
    JOURNAL OF MODERN DYNAMICS, 2024, 20 : 299 - 318