Some New Results on Three-Dimensional Rotations and Pseudo-Rotations

被引:7
|
作者
Brezov, D. S. [1 ]
Mladenova, C. D. [2 ]
Mladenov, Ivailo M. [3 ]
机构
[1] Univ Architecture Civil Engn & Geodesy, Dept Math, 1 Hristo Smirnenski Blvd, Sofia 1046, Bulgaria
[2] Bulgarian Acad Sci, Inst Mech, Sofia 1113, Bulgaria
[3] Bulgarian Acad Sci, Inst Biophys, Sofia 1113, Bulgaria
关键词
Quaternions; split quaternions; vector-parameters; Euler decomposition; Rodrigues' formula; hyperbolic geometry; VECTOR;
D O I
10.1063/1.4827238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a vector parameter technique to obtain the generalized Euler decompositions with respect to arbitrarily chosen axes for the three-dimensional special orthogonal group SO(3) and the three-dimensional Lorentz group SO(2,1). Our approach, based on projecting a quaternion (respectively split quaternion) from the corresponding spin cover, has proven quite effective in various problems of geometry and physics [1, 2, 3]. In particular, we obtain explicit (generally double-valued) expressions for the three parameters in the decomposition and discuss separately the degenerate and divergent solutions, as well as decompositions with respect to two axes. There are some straightforward applications of this method in special relativity and quantum mechanics which are discussed elsewhere (see [4]).
引用
收藏
页码:275 / 288
页数:14
相关论文
共 50 条
  • [1] Pseudo-Rotations versus Rotations
    Ginzburg, Viktor L.
    Gurel, Bapk Z.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3411 - 3449
  • [2] Pseudo-rotations and holomorphic curves
    Erman Çineli
    Viktor L. Ginzburg
    Başak Z. Gürel
    Selecta Mathematica, 2020, 26
  • [3] Pseudo-rotations of the open annulus
    F. Béguin
    S. Crovisier
    F. Le Roux
    Bulletin of the Brazilian Mathematical Society, 2006, 37 : 275 - 306
  • [4] Pseudo-rotations of the open annulus
    Beguin, F.
    Crovisier, S.
    Le Roux, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (02): : 275 - 306
  • [5] PSEUDO-ROTATIONS AND STEENROD SQUARES
    Shelukhin, Egor
    JOURNAL OF MODERN DYNAMICS, 2020, 16 : 289 - 304
  • [6] Pseudo-rotations and holomorphic curves
    Cineli, Erman
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (05):
  • [7] Hamiltonian pseudo-rotations of projective spaces
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    INVENTIONES MATHEMATICAE, 2018, 214 (03) : 1081 - 1130
  • [8] Hamiltonian pseudo-rotations of projective spaces
    Viktor L. Ginzburg
    Başak Z. Gürel
    Inventiones mathematicae, 2018, 214 : 1081 - 1130
  • [9] Pseudo-rotations and Steenrod squares revisited
    Shelukhin, Egor
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (04) : 1255 - 1261
  • [10] A FINITE DIMENSIONAL PROOF OF A RESULT OF HUTCHINGS ABOUT IRRATIONAL PSEUDO-ROTATIONS
    Le Calvez, Patrice
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 837 - 866