Pseudo-rotations and Steenrod squares revisited

被引:0
|
作者
Shelukhin, Egor [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove that if a closed monotone symplectic manifold admits a Hamiltonian pseudo-rotation, which may be degenerate, then the quantum Steenrod square of the cohomology class Poincare dual to the point must be deformed. This result gives restrictions on the existence of pseudo-rotations, implying a form of uniruledness by pseudo-holomorphic spheres, and generalizes a recent result of the author. The new component in the proof consists in an elementary calculation with capped periodic orbits.
引用
收藏
页码:1255 / 1261
页数:7
相关论文
共 50 条
  • [1] PSEUDO-ROTATIONS AND STEENROD SQUARES
    Shelukhin, Egor
    JOURNAL OF MODERN DYNAMICS, 2020, 16 : 289 - 304
  • [2] From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares
    Cineli, Erman
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (03) : 2274 - 2297
  • [3] Pseudo-Rotations versus Rotations
    Ginzburg, Viktor L.
    Gurel, Bapk Z.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3411 - 3449
  • [4] Hutchings' inequality for the Calabi invariant revisited with an application to pseudo-rotations
    Pirnapasov, Abror
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (04)
  • [5] Pseudo-rotations and holomorphic curves
    Erman Çineli
    Viktor L. Ginzburg
    Başak Z. Gürel
    Selecta Mathematica, 2020, 26
  • [6] Pseudo-rotations of the open annulus
    F. Béguin
    S. Crovisier
    F. Le Roux
    Bulletin of the Brazilian Mathematical Society, 2006, 37 : 275 - 306
  • [7] Pseudo-rotations of the open annulus
    Beguin, F.
    Crovisier, S.
    Le Roux, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (02): : 275 - 306
  • [8] Pseudo-rotations and holomorphic curves
    Cineli, Erman
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (05):
  • [9] Hamiltonian pseudo-rotations of projective spaces
    Ginzburg, Viktor L.
    Gurel, Basak Z.
    INVENTIONES MATHEMATICAE, 2018, 214 (03) : 1081 - 1130
  • [10] Hamiltonian pseudo-rotations of projective spaces
    Viktor L. Ginzburg
    Başak Z. Gürel
    Inventiones mathematicae, 2018, 214 : 1081 - 1130