OPERADS AND PHYLOGENETIC TREES

被引:0
|
作者
Baez, John C. [1 ]
Otter, Nina
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
来源
关键词
operads; trees; phylogenetic trees; Markov processes; CATEGORIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an operad Phyl whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of Com, the operad for commutative semigroups, and [0,infinity), the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that there is a homeomorphism between the space of n-ary operations of Phyl and T(n)x[0,infinity)(n+1), where T-n is the space of metric n-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of Phyl. These always extend to coalgebras of the larger operad Com+[0,infinity], since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad O, its coproduct with [0,infinity] contains the operad W(O) constructed by Boardman and Vogt. To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees.
引用
下载
收藏
页码:1397 / 1453
页数:57
相关论文
共 50 条
  • [41] A STOCHASTIC MODEL FOR PHYLOGENETIC TREES
    Liggett, Thomas M.
    Schinazi, Rinaldo B.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 601 - 607
  • [42] Wald Space for Phylogenetic Trees
    Lueg, Jonas
    Garba, Maryam K.
    Nye, Tom M. W.
    Huckemann, Stephan F.
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 710 - 717
  • [43] Phylogenetic trees and Euclidean embeddings
    Mark Layer
    John A. Rhodes
    Journal of Mathematical Biology, 2017, 74 : 99 - 111
  • [44] An algebraic metric for phylogenetic trees
    Alberich, Ricardo
    Cardona, Gabriel
    Rossello, Francesc
    Valiente, Gabriel
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1320 - 1324
  • [45] Terrestrial apes and phylogenetic trees
    Luis Arsuaga, Juan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 : 8910 - 8917
  • [46] EXPECTED ASYMMETRY OF PHYLOGENETIC TREES
    FARRIS, JS
    SYSTEMATIC ZOOLOGY, 1976, 25 (02): : 196 - 198
  • [47] Phylogenetic degrees for claw trees
    Dinu, Rodica Andreea
    Vodicka, Martin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 206
  • [48] Test a clade in phylogenetic trees
    Shi, Xiaofei
    Gu, Hong
    Field, Chris
    MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (10) : 1976 - 1983
  • [49] The Shapley value of phylogenetic trees
    Claus-Jochen Haake
    Akemi Kashiwada
    Francis Edward Su
    Journal of Mathematical Biology, 2008, 56 : 479 - 497
  • [50] On distances between phylogenetic trees
    He, X
    Jiang, T
    Li, M
    Tromp, J
    PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 427 - 436