OPERADS AND PHYLOGENETIC TREES

被引:0
|
作者
Baez, John C. [1 ]
Otter, Nina
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
来源
关键词
operads; trees; phylogenetic trees; Markov processes; CATEGORIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an operad Phyl whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of Com, the operad for commutative semigroups, and [0,infinity), the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that there is a homeomorphism between the space of n-ary operations of Phyl and T(n)x[0,infinity)(n+1), where T-n is the space of metric n-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of Phyl. These always extend to coalgebras of the larger operad Com+[0,infinity], since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad O, its coproduct with [0,infinity] contains the operad W(O) constructed by Boardman and Vogt. To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees.
引用
下载
收藏
页码:1397 / 1453
页数:57
相关论文
共 50 条
  • [31] The prior probabilities of phylogenetic trees
    Joel D. Velasco
    Biology & Philosophy, 2008, 23 : 455 - 473
  • [32] RELIABILITY OF MOLECULAR PHYLOGENETIC TREES
    THATCHER, DR
    NATURE, 1975, 256 (5520) : 698 - 698
  • [33] Evolutionary models of phylogenetic trees
    Pinelis, I
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 (1522) : 1425 - 1431
  • [34] The space of ultrametric phylogenetic trees
    Gavryushkin, Alex
    Drummond, Alexei J.
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 403 : 197 - 208
  • [35] Phylogenetic networks, trees, and clusters
    Nakhleh, L
    Wang, LS
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 919 - 926
  • [36] The Shapley value of phylogenetic trees
    Haake, Claus-Jochen
    Kashiwada, Akemi
    Su, Francis Edward
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 56 (04) : 479 - 497
  • [37] Information geometry for phylogenetic trees
    Garba, M. K.
    Nye, T. M. W.
    Lueg, J.
    Huckemann, S. F.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (03)
  • [38] Intertwining phylogenetic trees and networks
    Schliep, Klaus
    Potts, Alastair J.
    Morrison, David A.
    Grimm, Guido W.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (10): : 1212 - 1220
  • [39] Measuring inconsistency in phylogenetic trees
    Willson, SJ
    JOURNAL OF THEORETICAL BIOLOGY, 1998, 190 (01) : 15 - 36
  • [40] The prior probabilities of phylogenetic trees
    Velasco, Joel D.
    BIOLOGY & PHILOSOPHY, 2008, 23 (04) : 455 - 473