Multivariate density estimation: A comparative study

被引:7
|
作者
Cwik, J [1 ]
Koronacki, J [1 ]
机构
[1] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
来源
NEURAL COMPUTING & APPLICATIONS | 1997年 / 6卷 / 03期
关键词
Gaussian clustering neural network; non-parametric density estimation; plug-in kernel estimator; projection pursuit; recursive EM algorithm;
D O I
10.1007/BF01413829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is a continuation of the authors' earlier work [1], where a version of the Traven's [2] Gaussian clustering neural network (being a recursive counterpart of the EM algorithm) has been investigated. A comparative simulation study of the Gaussian clustering algorithm [1], two versions of plug-in kernel estimators and a version of Friedman's projection pursuit algorithm are presented for two-and three-dimensional data. Simulations show that the projection pursuit algorithm is a good or a very good estimator, provided, however, that the number of projections is suitably chosen. Although practically confined to estimating normal mixtures, the simulations confirm general reliability of plug-in estimators, and show the same property of the Gaussian clustering algorithm. Indeed, the simulations confirm the earlier conjecture that this last estimator proivdes a way of effectively estimating arbitrary and highly structured continuous densities on R-d, at least for small d, either by using this estimator itself or, rather by using it as a pilot estimator for a newly proposed plug-in estimator.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
  • [41] Approximate inference of the bandwidth in multivariate kernel density estimation
    Filippone, Maurizio
    Sanguinetti, Guido
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3104 - 3122
  • [42] Multivariate PDF Matching via Kernel Density Estimation
    Fantinato, Denis G.
    Boccato, Levy
    Attux, Romis
    Neves, Aline
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA, SIGNAL AND VISION PROCESSING (CIMSIVP), 2014, : 150 - 157
  • [43] Expanding Gaussian kernels for multivariate conditional density estimation
    Davis, DT
    Hwang, JN
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3525 - 3528
  • [44] Deterministic annealing for density estimation by multivariate normal mixtures
    Kloppenburg, M
    Tavan, P
    PHYSICAL REVIEW E, 1997, 55 (03) : R2089 - R2092
  • [45] Robust multivariate density estimation under Gaussian noise
    Kostkova, Jitka
    Flusser, Jan
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (03) : 1113 - 1143
  • [46] Multiresolution approximation and consistent estimation of a multivariate density function
    Garcia-Fernandez, Rosa M.
    Palacios-Gonzalez, Federico
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (12) : 2623 - 2641
  • [47] Estimation of a multivariate stochastic volatility density by kernel deconvolution
    Van Es, Bert
    Spreij, Peter
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (03) : 683 - 697
  • [48] NONPARAMETRIC ESTIMATION OF MIXED PARTIAL DERIVATIVES OF A MULTIVARIATE DENSITY
    SINGH, RS
    JOURNAL OF MULTIVARIATE ANALYSIS, 1976, 6 (01) : 111 - 122
  • [49] Fast multivariate log-concave density estimation
    Rathke, Fabian
    Schnoerr, Christoph
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 : 41 - 58
  • [50] Density estimation of multivariate samples using Wasserstein distance
    Luini, E.
    Arbenz, P.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 181 - 210