Robust inverse regression for dimension reduction

被引:12
|
作者
Dong, Yuexiao [1 ]
Yu, Zhou [2 ]
Zhu, Liping [3 ,4 ]
机构
[1] Temple Univ, Dept Stat, Philadelphia, PA 19122 USA
[2] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[3] SUFE, Sch Stat & Management, Shanghai 200433, Peoples R China
[4] SUFE, Key Lab Math Econ, Minist Educ, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Central space; Ellipticity; Multivariate median; Sliced inverse regression; COVARIANCE;
D O I
10.1016/j.jmva.2014.10.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Classical sufficient dimension reduction methods are sensitive to outliers present in predictors, and may not perform well when the distribution of the predictors is heavy-tailed. In this paper, we propose two robust inverse regression methods which are insensitive to data contamination: weighted inverse regression estimation and sliced inverse median estimation. Both weighted inverse regression estimation and sliced inverse median estimation produce unbiased estimates of the central space when the predictors follow an elliptically contoured distribution. Our proposals are compared with existing robust dimension reduction procedures through comprehensive simulation studies and an application to the New Zealand mussel data. It is demonstrated that our methods have better overall performances than existing robust procedures in the presence of potential outliers and/or inliers. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 50 条
  • [31] Sliced regression for dimension reduction
    Wang, Hansheng
    Xia, Yingcun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 811 - 821
  • [32] FLEXIBLE DIMENSION REDUCTION IN REGRESSION
    Wang, Tao
    Zhu, Lixing
    STATISTICA SINICA, 2018, 28 (02) : 1009 - 1029
  • [33] On directional regression for dimension reduction
    Li, Bing
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 997 - 1008
  • [34] Determining the dimension of weighted inverse regression ensemble
    Chen, Yinfeng
    Li, Lu
    Yu, Zhou
    STAT, 2023, 12 (01):
  • [35] Robust functional sliced inverse regression
    Guochang Wang
    Jianjun Zhou
    Wuqing Wu
    Min Chen
    Statistical Papers, 2017, 58 : 227 - 245
  • [36] An inverse problem approach to robust regression
    Fuchs, JJ
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1809 - 1812
  • [37] Robust functional sliced inverse regression
    Wang, Guochang
    Zhou, Jianjun
    Wu, Wuqing
    Chen, Min
    STATISTICAL PAPERS, 2017, 58 (01) : 227 - 245
  • [38] A note on robust kernel inverse regression
    Dong, Yuexiao
    Yu, Zhou
    Sun, Yizhi
    STATISTICS AND ITS INTERFACE, 2013, 6 (01) : 45 - 52
  • [39] Federated Sufficient Dimension Reduction Through High-Dimensional Sparse Sliced Inverse Regression
    Cui, Wenquan
    Zhao, Yue
    Xu, Jianjun
    Cheng, Haoyang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,
  • [40] A new dimension reduction approach for data-rich marketing environments: Sliced inverse regression
    Naik, PA
    Hagerty, MR
    Tsai, CL
    JOURNAL OF MARKETING RESEARCH, 2000, 37 (01) : 88 - 101