Determining the dimension of weighted inverse regression ensemble

被引:0
|
作者
Chen, Yinfeng [1 ]
Li, Lu [2 ]
Yu, Zhou [1 ,3 ]
机构
[1] East China Normal Univ, Sch Stat, KLATASDS MOE, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[3] 3663 North Zhongshan Rd, Shanghai, Peoples R China
来源
STAT | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
order determination; sliced inverse regression; sufficient dimension reduction; weighted inverse regression ensemble; REDUCTION; TESTS;
D O I
10.1002/sta4.627
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced inverse regression (SIR) has propelled sufficient dimension reduction (SDR) into a mature and versatile field with wide-ranging applications in statistics, including regression diagnostics, data visualisation, image processing and machine learning. However, traditional inverse regression techniques encounter challenges associated with sparsity arising from slicing operations. Weighted inverse regression ensemble (WIRE) presents a novel slicing-free approach to SDR. In this paper, we establish the asymptotic test theory to determine the dimension as estimated by WIRE. Moreover, we propose a permutation-based method for determining the order. Extensive numerical studies and real data analysis confirm the excellent performance of the proposed order determination method based on WIRE.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Determining the dimension in sliced inverse regression and related methods
    Ferre, L
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 132 - 140
  • [2] Locally Weighted Ensemble Learning for Regression
    Yu, Man
    Xie, Zongxia
    Shi, Hong
    Hu, Qinghua
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT I, 2016, 9651 : 65 - 76
  • [3] Dimension choice for Sliced Inverse Regression
    Ferre, L.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 323 (04):
  • [4] Dimension choice for sliced inverse regression
    Ferre, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (04): : 403 - 406
  • [6] Robust inverse regression for dimension reduction
    Dong, Yuexiao
    Yu, Zhou
    Zhu, Liping
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 134 : 71 - 81
  • [7] Sliced inverse moment regression using weighted chi-squared tests for dimension reduction
    Ye, Zhishen
    Yang, Jie
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3121 - 3131
  • [9] Tail inverse regression: Dimension reduction for of extremes
    Aghbalou, Anass
    Portier, Francois
    Sabourin, Anne
    Zhou, Chen
    BERNOULLI, 2024, 30 (01) : 503 - 533
  • [10] Overlapping sliced inverse regression for dimension reduction
    Zhang, Ning
    Yu, Zhou
    Wu, Qiang
    ANALYSIS AND APPLICATIONS, 2019, 17 (05) : 715 - 736