机构:
Temple Univ, Dept Stat, Philadelphia, PA 19122 USATemple Univ, Dept Stat, Philadelphia, PA 19122 USA
Dong, Yuexiao
[1
]
Yu, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaTemple Univ, Dept Stat, Philadelphia, PA 19122 USA
Yu, Zhou
[2
]
Zhu, Liping
论文数: 0引用数: 0
h-index: 0
机构:
SUFE, Sch Stat & Management, Shanghai 200433, Peoples R China
SUFE, Key Lab Math Econ, Minist Educ, Shanghai 200433, Peoples R ChinaTemple Univ, Dept Stat, Philadelphia, PA 19122 USA
Zhu, Liping
[3
,4
]
机构:
[1] Temple Univ, Dept Stat, Philadelphia, PA 19122 USA
[2] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[3] SUFE, Sch Stat & Management, Shanghai 200433, Peoples R China
[4] SUFE, Key Lab Math Econ, Minist Educ, Shanghai 200433, Peoples R China
Central space;
Ellipticity;
Multivariate median;
Sliced inverse regression;
COVARIANCE;
D O I:
10.1016/j.jmva.2014.10.005
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Classical sufficient dimension reduction methods are sensitive to outliers present in predictors, and may not perform well when the distribution of the predictors is heavy-tailed. In this paper, we propose two robust inverse regression methods which are insensitive to data contamination: weighted inverse regression estimation and sliced inverse median estimation. Both weighted inverse regression estimation and sliced inverse median estimation produce unbiased estimates of the central space when the predictors follow an elliptically contoured distribution. Our proposals are compared with existing robust dimension reduction procedures through comprehensive simulation studies and an application to the New Zealand mussel data. It is demonstrated that our methods have better overall performances than existing robust procedures in the presence of potential outliers and/or inliers. (C) 2014 Elsevier Inc. All rights reserved.
机构:
E China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R ChinaE China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R China
Zhu, Li-Ping
Yin, Xiangrong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Stat, Athens, GA 30602 USAE China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R China
Yin, Xiangrong
Zhu, Li-Xing
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming, Peoples R China
Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaE China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R China
机构:
Middle Tennessee State Univ, Computat Sci PhD Program, 1301 E Main St, Murfreesboro, TN 37132 USAMiddle Tennessee State Univ, Computat Sci PhD Program, 1301 E Main St, Murfreesboro, TN 37132 USA
Zhang, Ning
Yu, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Stat, Shanghai 200241, Peoples R ChinaMiddle Tennessee State Univ, Computat Sci PhD Program, 1301 E Main St, Murfreesboro, TN 37132 USA
Yu, Zhou
Wu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Middle Tennessee State Univ, Computat Sci PhD Program, 1301 E Main St, Murfreesboro, TN 37132 USA
Middle Tennessee State Univ, Dept Math Sci, 1301 E Main St, Murfreesboro, TN 37132 USAMiddle Tennessee State Univ, Computat Sci PhD Program, 1301 E Main St, Murfreesboro, TN 37132 USA