Dimension Reduction via an Alternating Inverse Regression

被引:5
|
作者
Zhu, Li-Ping [1 ]
Yin, Xiangrong [2 ]
Zhu, Li-Xing [3 ,4 ]
机构
[1] E China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R China
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[3] Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Central subspace; Dimension reduction subspace; Partial least squares; Sliced inverse regression; PARTIAL LEAST-SQUARES; ASYMPTOTICS;
D O I
10.1198/jcgs.2010.08070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose an alternating inverse regression (AIR) to estimate the central subspace (CS) in a successive manner. Taking advantage of both sliced inverse regression (SIR) and partial least squares (PLS), AIR circumvents the collinearity and curse of dimensionality simultaneously. A modified BIC criterion with a penalty term achieving an optimal convergence rate is suggested to estimate the dimension of the CS. We also extend AIR to the multivariate responses case. Through illustrative examples and a real dataset, we demonstrate the usefulness of AIR, and its advantages over some existing methods. Supplemental materials for this article are available online.
引用
收藏
页码:887 / 899
页数:13
相关论文
共 50 条
  • [1] Dimension reduction via parametric inverse regression
    Bura, E
    [J]. L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 215 - 228
  • [2] Robust inverse regression for dimension reduction
    Dong, Yuexiao
    Yu, Zhou
    Zhu, Liping
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 134 : 71 - 81
  • [4] Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
    Cook, RD
    Ni, LQ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 410 - 428
  • [5] Tail inverse regression: Dimension reduction for of extremes
    Aghbalou, Anass
    Portier, Francois
    Sabourin, Anne
    Zhou, Chen
    [J]. BERNOULLI, 2024, 30 (01) : 503 - 533
  • [6] Overlapping sliced inverse regression for dimension reduction
    Zhang, Ning
    Yu, Zhou
    Wu, Qiang
    [J]. ANALYSIS AND APPLICATIONS, 2019, 17 (05) : 715 - 736
  • [8] Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression
    Yeh, Yi-Ren
    Huang, Su-Yun
    Lee, Yuh-Jye
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (11) : 1590 - 1603
  • [9] Sufficient dimension folding via tensor inverse regression
    Li, Xiangjie
    Zhang, Jingxiao
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (08) : 1413 - 1429
  • [10] A minimum discrepancy approach to multivariate dimension reduction via k-means inverse regression
    Wen, Xuerong Meggie
    Setodji, C. Messan
    Adekpedjou, Akim
    [J]. STATISTICS AND ITS INTERFACE, 2009, 2 (04) : 503 - 511