Dimension Reduction via an Alternating Inverse Regression

被引:5
|
作者
Zhu, Li-Ping [1 ]
Yin, Xiangrong [2 ]
Zhu, Li-Xing [3 ,4 ]
机构
[1] E China Normal Univ, Dept Stat & Actuarial Sci, Shanghai 200062, Peoples R China
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[3] Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Central subspace; Dimension reduction subspace; Partial least squares; Sliced inverse regression; PARTIAL LEAST-SQUARES; ASYMPTOTICS;
D O I
10.1198/jcgs.2010.08070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose an alternating inverse regression (AIR) to estimate the central subspace (CS) in a successive manner. Taking advantage of both sliced inverse regression (SIR) and partial least squares (PLS), AIR circumvents the collinearity and curse of dimensionality simultaneously. A modified BIC criterion with a penalty term achieving an optimal convergence rate is suggested to estimate the dimension of the CS. We also extend AIR to the multivariate responses case. Through illustrative examples and a real dataset, we demonstrate the usefulness of AIR, and its advantages over some existing methods. Supplemental materials for this article are available online.
引用
收藏
页码:887 / 899
页数:13
相关论文
共 50 条
  • [41] Semi-Parametric Polynomial Inverse Regression for Dimension Reduction and Its Application in Microarray Data
    Zhang Guofen
    Zhang Yan
    [J]. 2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 352 - 355
  • [42] Dimension reduction for Quasi-Monte Carlo methods via quadratic regression
    Imai, Junichi
    Tan, Ken Seng
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 227 : 371 - 390
  • [43] Sufficient dimension reduction and graphics in regression
    Chiaromonte, F
    Cook, RD
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (04) : 768 - 795
  • [44] Dimension reduction in functional regression with applications
    Amato, U
    Antoniadis, A
    De Feis, I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2422 - 2446
  • [45] Sufficient Dimension Reduction and Graphics in Regression
    Francesca Chiaromonte
    R. Dennis Cook
    [J]. Annals of the Institute of Statistical Mathematics, 2002, 54 : 768 - 795
  • [46] Sufficient dimension reduction and prediction in regression
    University of Minnesota, School of Statistics, 313 Ford Hall, 224 Church Street Southeast, Minneapolis, MN 55455, United States
    [J]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1600, 1906 (4385-4405):
  • [47] Dimension reduction for censored regression data
    Li, KC
    Wang, JL
    Chen, CH
    [J]. ANNALS OF STATISTICS, 1999, 27 (01): : 1 - 23
  • [48] Dimension reduction for conditional mean in regression
    Cook, RD
    Bing, L
    [J]. ANNALS OF STATISTICS, 2002, 30 (02): : 455 - 474
  • [49] Minimax adaptive dimension reduction for regression
    Paris, Quentin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 186 - 202
  • [50] Fisher lecture: Dimension reduction in regression
    Cook, R. Dennis
    [J]. STATISTICAL SCIENCE, 2007, 22 (01) : 1 - 26