The Transport Speed and Optimal Work in Pulsating Frenkel-Kontorova Models

被引:0
|
作者
Rabar, Braslav [1 ]
Slijepcevic, Sinisa [1 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka 30, Zagreb, Croatia
关键词
DYNAMICS; EXISTENCE; SYSTEMS;
D O I
10.1007/s00220-019-03577-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalized one-dimensional chain in a periodic potential (the Frenkel-Kontorova model), with dissipative, pulsating (or ratchet) dynamics as a model of transport when the average force on the system is zero. We find lower bounds on the transport speed under mild assumptions on the asymmetry and steepness of the site potential. Physically relevant applications include explicit estimates of the pulse frequencies and mean spacings for which the transport is non-zero, and more specifically the pulse frequencies which maximize work. The bounds explicitly depend on the pulse period and subtle number-theoretical properties of the mean spacing. The main tool is the study of time evolution of spatially invariant measures in the space of measures equipped with the L-1-Wasserstein metric.
引用
收藏
页码:399 / 423
页数:25
相关论文
共 50 条
  • [21] Frenkel-Kontorova models, pinned particle configurations, and Burgers shocks
    Mungan, Muhittin
    Yolcu, Cem
    PHYSICAL REVIEW B, 2010, 81 (22):
  • [22] Emergent friction in two-dimensional Frenkel-Kontorova models
    Norell, Jesper
    Fasolino, Annalisa
    de Wijn, Astrid S.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [23] Sliding dynamics of the Frenkel-Kontorova model
    Strunz, T
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (12): : 1108 - 1112
  • [24] QUANTUM EFFECTS IN THE FRENKEL-KONTOROVA MODEL
    BORGONOVI, F
    GUARNERI, I
    SHEPELYANSKY, DL
    PHYSICAL REVIEW LETTERS, 1989, 63 (19) : 2010 - 2012
  • [25] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    MAZZUCCHELLI, GM
    PHYSICAL REVIEW B, 1988, 38 (04): : 2808 - 2812
  • [26] Topological solitons in Frenkel-Kontorova chains
    Abronin, I. A.
    Kuznetsova, N. M.
    Mikheikin, I. D.
    Sakun, V. P.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 10 (02) : 203 - 210
  • [27] HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6187 - 6227
  • [28] ON THE EXISTENCE OF SOLUTIONS FOR THE FRENKEL-KONTOROVA MODELS ON QUASI-CRYSTALS
    Du, Jianxing
    Su, Xifeng
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4177 - 4198
  • [29] CROWDIONS USING THE FRENKEL-KONTOROVA MODEL
    KOEHLER, J
    PHYSICAL REVIEW B, 1978, 18 (10): : 5333 - 5339
  • [30] DISCRETENESS EFFECTS IN THE FRENKEL-KONTOROVA SYSTEM
    MUNAKATA, T
    ISHIMORI, Y
    PHYSICA B & C, 1979, 98 (1-2): : 68 - 73