Adaptive hp-Refinement for 2-D Maxwell Eigenvalue Problems: Method and Benchmarks

被引:2
|
作者
Harmon, Jake J. [1 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
关键词
Eigenvalues and eigenfunctions; Finite element analysis; Convergence; Error analysis; Benchmark testing; Estimation; Standards; Adaptive error control; adaptive refinement; adjoint methods; computational electromagnetics (CEM); finite element method (FEM); higher order methods; hp-refinement; FINITE-ELEMENT-METHOD; WAVE-GUIDE DISCONTINUITIES; P-VERSION; DISCRETE COMPACTNESS; 1-DIMENSION; ELECTROMAGNETICS; CONVERGENCE; STRATEGY;
D O I
10.1109/TAP.2022.3145473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an application of goal-oriented adaptive isotropic hp-refinement for the 2-D Maxwell eigenvalue problem. We apply a simplified goal-oriented error expression for improving the accuracy of the eigenvalues, which, when combined with indicators derived from the solution, enables highly targeted discretization tuning. Furthermore, we introduce an hp-refinement/coarsening optimizer coupled with smoothness estimation for refinement classification and execution. These enhancements yield cost-effective resource allocations that reach extremely high accuracy rapidly even for eigenvalues of singular eigenfunctions. Finally, we provide numerical benchmarks more accurate than existing numerical reference values, along with new benchmarks for higher order modes that will facilitate the comparison and development of new approaches to adaptivity and hp finite elements in computational electromagnetics (CEM). Our implementation is based on the open-source finite element library deal.II.
引用
收藏
页码:4663 / 4673
页数:11
相关论文
共 50 条
  • [41] The infinite element method for 2-D unbounded field problems
    Fei, ZJ
    Ni, GZ
    Li, RL
    [J]. ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS (ICEF '96), 1997, : 300 - 303
  • [42] 2-D local hp adaptive isogeometric analysis based on hierarchical Fup basis functions
    Kamber, G.
    Kozulic, V.
    Gotovac, B.
    Gotovac, H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 398
  • [43] On DR/BEM for eigenvalue analysis of 2-D acoustics
    C. G. Provatidis
    [J]. Computational Mechanics, 2004, 35 : 41 - 53
  • [44] A NEW APPROACH TO 2-D EIGENVALUE SHAPE DESIGN
    MELNIKOV, YA
    TITARENKO, SA
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (12) : 2017 - 2030
  • [45] On DR/BEM for eigenvalue analysis of 2-D acoustics
    Provatidis, CG
    [J]. COMPUTATIONAL MECHANICS, 2004, 35 (01) : 41 - 53
  • [46] The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics
    Schillinger, D.
    Duester, A.
    Rank, E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (09) : 1171 - 1202
  • [47] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    [J]. Numerische Mathematik, 2014, 128 : 615 - 634
  • [48] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [49] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    [J]. Journal of Computational and Applied Mathematics, 2022, 415
  • [50] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    Carstensen, C.
    Gedicke, J.
    Mehrmann, V.
    Miedlar, A.
    [J]. NUMERISCHE MATHEMATIK, 2014, 128 (04) : 615 - 634