ON THE BRAUER GROUP OF ENRIQUES SURFACES

被引:0
|
作者
Beauville, Arnaud [1 ]
机构
[1] Univ Nice, UMR 6621, CNRS, F-06108 Nice 2, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a complex Enriques surface (quotient of a K3 surface X by a fixed-point-free involution). The Brauer group Br(S) has a unique nonzero element. We describe its pull-back in Br(X), and show that the surfaces S for which it is trivial form a countable union of hypersurfaces in the moduli space of Enriques surfaces.
引用
收藏
页码:927 / 934
页数:8
相关论文
共 50 条
  • [41] Salem Numbers and Enriques Surfaces
    Dolgachev, Igor
    EXPERIMENTAL MATHEMATICS, 2018, 27 (03) : 287 - 301
  • [42] On secant spaces to Enriques surfaces
    Knutsen, Andreas Leopold
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (05) : 907 - 931
  • [43] A brief introduction to Enriques surfaces
    Dolgachev, Igor V.
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 1 - 32
  • [44] The period lattice for Enriques surfaces
    Allcock, D
    MATHEMATISCHE ANNALEN, 2000, 317 (03) : 483 - 488
  • [45] ENRIQUES SURFACES COVERED BY JACOBIAN KUMMER SURFACES
    Ohashi, Hisanori
    NAGOYA MATHEMATICAL JOURNAL, 2009, 195 : 165 - 186
  • [46] ON THE BRAUER GROUP OF BIELLIPTIC SURFACES (WITH AN APPENDIX BY JONAS BERGSTROM AND SOFIA TIRABASSI)
    Ferrari, Eugenia
    Tirabassi, Sofia
    Vodrup, Magnus
    Bergstrom, Jonas
    DOCUMENTA MATHEMATICA, 2022, 27 : 383 - 426
  • [47] On the Brauer group
    Tankeev, SG
    IZVESTIYA MATHEMATICS, 2000, 64 (04) : 787 - 806
  • [48] Nodal Enriques surfaces are Reye congruences
    Martin, Gebhard
    Mezzedimi, Giacomo
    Veniani, Davide Cesare
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 49 - 65
  • [49] Failure of the Hasse principle for Enriques surfaces
    Varilly-Alvarado, Anthony
    Viray, Bianca
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 4884 - 4901
  • [50] On moduli spaces of polarized Enriques surfaces
    Knutsen, Andreas Leopold
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 144 : 106 - 136