On moduli spaces of polarized Enriques surfaces

被引:6
|
作者
Knutsen, Andreas Leopold [1 ]
机构
[1] Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, Norway
关键词
Enriques surfaces; Moduli spaces; Hilbert schemes; Degenerations; K3; SURFACES; PROJECTIVE DEGENERATIONS; LINE BUNDLES; EMBEDDINGS; THEOREM; PROOF;
D O I
10.1016/j.matpur.2020.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for any g >= 2, the etale double cover rho(g) : epsilon(g) -> (epsilon) over cap (g) from the moduli space epsilon(g) of complex polarized genus g Enriques surfaces to the moduli space (epsilon) over cap (g) of numerically polarized genus g Enriques surfaces is disconnected precisely over irreducible components of (epsilon) over cap (g) parametrizing 2-divisible classes, answering a question of Gritsenko and Hulek [13]. We characterize all irreducible components of epsilon(g) in terms of a new invariant of line bundles on Enriques surfaces that generalizes the phi-invariant introduced by Cossec [8]. In particular, we get a one-to-one correspondence between the irreducible components of epsilon(g) and 11-tuples of integers satisfying particular conditions. This makes it possible, in principle, to list all irreducible components of epsilon(g) for each g >= 2. (C) 2020 The Author. Published by Elsevier Masson SAS.
引用
收藏
页码:106 / 136
页数:31
相关论文
共 50 条
  • [1] Irreducible unirational and uniruled components of moduli spaces of polarized Enriques surfaces
    Ciro Ciliberto
    Thomas Dedieu
    Concettina Galati
    Andreas Leopold Knutsen
    [J]. Mathematische Zeitschrift, 2023, 303
  • [2] Irreducible unirational and uniruled components of moduli spaces of polarized Enriques surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Galati, Concettina
    Knutsen, Andreas Leopold
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (03)
  • [3] Moduli spaces of stable sheaves on Enriques surfaces
    Yoshioka, Kota
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2018, 58 (04) : 865 - 914
  • [4] On moduli spaces of semistable sheaves on Enriques surfaces
    Hauzer, Marcin
    [J]. ANNALES POLONICI MATHEMATICI, 2010, 99 (03) : 305 - 321
  • [5] The rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces
    Dolgachev, I.
    Kondo, S.
    [J]. IZVESTIYA MATHEMATICS, 2013, 77 (03) : 509 - 524
  • [6] Moduli spaces of stable vector bundles on Enriques surfaces
    Kim, H
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1998, 150 : 85 - 94
  • [7] Birational geometry of moduli spaces of stable objects on Enriques surfaces
    Beckmann, Thorsten
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (01):
  • [8] Birational geometry of moduli spaces of stable objects on Enriques surfaces
    Thorsten Beckmann
    [J]. Selecta Mathematica, 2020, 26
  • [9] Moduli of curves on Enriques surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Galati, Concettina
    Knutsen, Andreas Leopold
    [J]. ADVANCES IN MATHEMATICS, 2020, 365
  • [10] THE RATIONALITY OF THE MODULI SPACE OF ENRIQUES SURFACES
    KONDO, S
    [J]. COMPOSITIO MATHEMATICA, 1994, 91 (02) : 159 - 173