Superconducting hot-electron bolometer: from the discovery of. hot-electron phenomena to practical applications

被引:89
|
作者
Shurakov, A. [1 ,2 ]
Lobanov, Y. [1 ,2 ]
Goltsman, G. [1 ,3 ]
机构
[1] Moscow State Pedag Univ, Moscow 119571, Russia
[2] Moscow Inst Phys & Technol, Moscow, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow 10100, Russia
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2016年 / 29卷 / 02期
关键词
hot-electron phenomena; superconducting films; HEB detectors; QUANTUM CASCADE LASER; MGB2; THIN-FILMS; LOW-NOISE; ELECTROMAGNETIC-RADIATION; IF BANDWIDTH; PHONON INTERACTION; LOCAL OSCILLATOR; MILLIMETER-WAVE; PHASE-LOCKING; MIXERS;
D O I
10.1088/0953-2048/29/2/023001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance,. rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] CONFINEMENT OF HOT-ELECTRON PLASMA IN SUPERCONDUCTING LEVITRON
    BIRDSALL, DH
    HOOPER, EB
    ANDERSON, OA
    BERK, HL
    HARTMAN, CW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1323 - 1323
  • [42] HOT-ELECTRON PERCOLATION
    RIDLEY, BK
    SOLID-STATE ELECTRONICS, 1990, 33 (07) : 859 - 861
  • [43] Andreev reflection based normal metal hot-electron bolometer for space applications
    Vystavkin, A
    Chouvaev, D
    Kuzmin, L
    Tarasov, M
    Aderstedt, E
    Willander, M
    Claeson, T
    MILLIMETER AND SUBMILLIMETER WAVES IV, 1998, 3465 : 441 - 448
  • [44] HOT-ELECTRON SPECTROSCOPY
    HAYES, JR
    PHYSICA SCRIPTA, 1987, T19A : 171 - 178
  • [45] HOT-ELECTRON SPECTROSCOPY
    HAYES, JR
    LEVI, AFJ
    WIEGMANN, W
    ELECTRONICS LETTERS, 1984, 20 (21) : 851 - 852
  • [46] HOT-ELECTRON DIFFUSION
    NAG, BR
    PHYSICS LETTERS A, 1974, A 48 (01) : 5 - 6
  • [47] HOT-ELECTRON TRANSISTORS
    BORBLIK, VL
    GRIBNIKOV, ZS
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1988, 22 (09): : 973 - 984
  • [48] Linear and nonlinear flux-flow behaviors in superconducting hot-electron bolometer mixers
    Miao, Wei
    Li, Feiming
    Gao, Hao
    Zhou, Kangmin
    Zhong, Jiaqiang
    Ren, Yuan
    Zhang, Wen
    Shi, Shengcai
    Delorme, Yan
    APPLIED PHYSICS LETTERS, 2021, 118 (11)
  • [49] HOT-ELECTRON LUMINESCENCE
    ZAKHARCHENYA, BP
    JOURNAL OF LUMINESCENCE, 1981, 24-5 (NOV) : 669 - 674
  • [50] Characterization of a Graphene-Based Terahertz Hot-Electron Bolometer
    Gao, H.
    Miao, W.
    Wang, Z.
    Zhang, W.
    Geng, Y.
    Shi, S. C.
    Yu, C.
    He, Z. Z.
    Liu, Q. B.
    Feng, Z. H.
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES V, 2018, 10826