Classical mechanics from quantum state diffusion - a phase-space approach

被引:24
|
作者
Strunz, WT [1 ]
Percival, IC [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Dept Phys, Mile End Rd, London E1 4NS, England
来源
关键词
D O I
10.1088/0305-4470/31/7/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state diffusion (QSD) provides a natural unravelling of a mixed-state open quantum system into component pure states. We investigate the semiclassical limit of QSD in a phase-space approach using the Wigner function. As (h) over bar --> 0, QSD exhibits two very different dynamical regimes, depending on the volume of phase space covered by the quantum state. For large volumes there is a localization regime represented by classical nonlinear and nonlocal diffusion processes. For small volumes, comparable in size with a Planck cell, there is a wavepacket regime. Here, the centroid of the wavepacket follows a classical Langevin equation, obtained through the adiabatic elimination of the dynamics of the second-order moments of the wavepacket. The corresponding Fokker-Planck equation is identical to the one obtained from the classical limit of the original mixed-state dynamics. In the companion paper we present an axiomatic approach to a classical theory of quantum localization without using the underlying QSD theory.
引用
下载
收藏
页码:1801 / 1813
页数:13
相关论文
共 50 条
  • [31] Emergent time crystals from phase-space noncommutative quantum mechanics
    Bernardini, A. E.
    Bertolami, O.
    PHYSICS LETTERS B, 2022, 835
  • [32] PHASE-SPACE APPROACH TO QUANTUM DYNAMICS
    LEBOEUF, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : 4575 - 4586
  • [33] QUADRATIC HAMILTONIANS IN PHASE-SPACE QUANTUM-MECHANICS
    GADELLA, M
    GRACIABONDIA, JM
    NIETO, LM
    VARILLY, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2709 - 2738
  • [34] Heat flow and noncommutative quantum mechanics in phase-space
    Santos, Jonas F. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [35] Transformation theory for phase-space representations of quantum mechanics
    Wilkie, Joshua
    Brumer, Paul
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (06): : 064101 - 064101
  • [36] QUANTUM-MECHANICS IN COHERENT ALGEBRAS ON PHASE-SPACE
    LESCHE, B
    SELIGMAN, TH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01): : 91 - 105
  • [37] AMPLITUDE PHASE-SPACE MODEL FOR QUANTUM-MECHANICS
    GUDDER, SP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 23 (04) : 343 - 353
  • [38] SUBSIDIARY CONDITIONS IN THE PHASE-SPACE REPRESENTATION OF QUANTUM MECHANICS
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (01): : 122 - 124
  • [39] DISCRETE PHASE-SPACE MODEL FOR QUANTUM-MECHANICS
    BUOT, FA
    BELLS THEOREM, QUANTUM THEORY AND CONCEPTIONS OF THE UNIVERSE, 1989, 37 : 159 - 162
  • [40] Transformation theory for phase-space representations of quantum mechanics
    Wilkie, J
    Brumer, P
    PHYSICAL REVIEW A, 2000, 61 (06): : 4