Classical mechanics from quantum state diffusion - a phase-space approach

被引:24
|
作者
Strunz, WT [1 ]
Percival, IC [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Dept Phys, Mile End Rd, London E1 4NS, England
来源
关键词
D O I
10.1088/0305-4470/31/7/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state diffusion (QSD) provides a natural unravelling of a mixed-state open quantum system into component pure states. We investigate the semiclassical limit of QSD in a phase-space approach using the Wigner function. As (h) over bar --> 0, QSD exhibits two very different dynamical regimes, depending on the volume of phase space covered by the quantum state. For large volumes there is a localization regime represented by classical nonlinear and nonlocal diffusion processes. For small volumes, comparable in size with a Planck cell, there is a wavepacket regime. Here, the centroid of the wavepacket follows a classical Langevin equation, obtained through the adiabatic elimination of the dynamics of the second-order moments of the wavepacket. The corresponding Fokker-Planck equation is identical to the one obtained from the classical limit of the original mixed-state dynamics. In the companion paper we present an axiomatic approach to a classical theory of quantum localization without using the underlying QSD theory.
引用
下载
收藏
页码:1801 / 1813
页数:13
相关论文
共 50 条
  • [21] Aspects of phase-space noncommutative quantum mechanics
    Bertolami, O.
    Leal, P.
    PHYSICS LETTERS B, 2015, 750 : 6 - 11
  • [22] Quantum mechanics as a geometric phase: phase-space interferometers
    Luis, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (37): : 7677 - 7684
  • [23] ON THE REPRESENTATION OF QUANTUM-MECHANICS ON PHASE-SPACE
    STULPE, W
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (09) : 1785 - 1795
  • [25] Quantum revival patterns from classical phase-space trajectories
    Lando, Gabriel M.
    Vallejos, Raul O.
    Ingold, Gert-Ludwig
    Ozorio De Almeida, Alfredo M.
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [26] PHASE-SPACE DYNAMICS AND QUANTUM-MECHANICS
    DEAL, WJ
    THEORETICA CHIMICA ACTA, 1990, 77 (04): : 225 - 237
  • [27] Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics
    Trahan, CJ
    Wyatt, RE
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (14): : 7017 - 7029
  • [28] Correspondence between the Energy Equipartition Theorem in Classical Mechanics and Its Phase-Space Formulation in Quantum Mechanics
    Marulanda, Esteban
    Restrepo, Alejandro
    Restrepo, Johans
    ENTROPY, 2023, 25 (06)
  • [29] QUANTUM STATISTICAL-MECHANICS IN THE COHERENT-STATE PHASE-SPACE REPRESENTATION
    OTERO, D
    PLASTINO, A
    PROTO, AN
    MISRAHI, SS
    PHYSICAL REVIEW A, 1988, 37 (08) : 3144 - 3150
  • [30] Emergent time crystals from phase-space noncommutative quantum mechanics
    Bernardini, A. E.
    Bertolami, O.
    PHYSICS LETTERS B, 2022, 835