Objective value on Apparent diffusion coefficient (ADC) map to categorize the intensity of diffusion-weighted imaging (DWI) restriction for prostate cancer detection on multiparametric prostate MRI

被引:0
|
作者
Mussi, Thais Caldara [1 ]
Martins, Tatiana [1 ,2 ]
Tachibana, Adriano [1 ]
Mousessian, Pedro Nogueira [1 ]
Baroni, Ronaldo Hueb [1 ]
机构
[1] Hosp Israelita Albert Einstein, Albert Einstein 627, BR-05652900 Sao Paulo, SP, Brazil
[2] Ecoar Med Diagnost, Belo Horizonte, MG, Brazil
来源
INTERNATIONAL BRAZ J UROL | 2018年 / 44卷 / 05期
关键词
Magnetic Resonance Imaging; Prostatic Neoplasms; Prostate; ACTIVE SURVEILLANCE; DATA SYSTEM; BIOPSY; ACCURACY;
D O I
10.1590/S1677-5538.IBJU.2018.0038
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose: To identify objective and subjective criteria on multiparametric prostate MRI that can be helpful for prostate cancer detection. Materials and Methods: Retrospective study, IRB approved, including 122 patients who had suspicious lesion on MRI and who underwent prostate biopsy with ultrasonography (US)/MRI imaging fusion. There were 60 patients with positive biopsies and 62 with negative biopsies. MRI of these patients were randomized and evaluated independently by two blinded radiologists. The following variables were analyzed in each lesion: morphology, contours, T2 signal, diffusion restriction (subjective impression and objective values), hyper-enhancement, contact with transition zone or prostatic contour, prostatic contour retraction, Likert and PIRADS classification. Results: Apparent diffusion coefficient (ADC) value was the best predictor of positivity for prostate cancer, with mean value of 1.08 (SD 0.20) and 1.09 mm2/sec (SD 0.24) on negative biopsies and 0.81 (SD 0.22) and 0.84 mm2/sec (SD 0.22) on positive biopsies for readers 1 and 2, respectively (p < 0.001 in both analysis). For the others categorical variables evaluated the best AUC for reader 1 was subjective intensity of diffusion restriction (AUC of 0.74) and for reader 2 was hyper-enhancement (AUC of 0.65), all inferior comparing to the value of ADC map. Interobserver agreement ranged from 0.13 to 0.75, poor in most measurements, and good or excellent (kappa > 0.6) only in lesion size and ADC values. Conclusions: Diffusion restriction with lower ADC-values is the best parameter to predict cancer on MRI prior to biopsy. Efforts to establish an ADC cutoff value would improve cancer detection, especially for less experience reader.
引用
收藏
页码:882 / 891
页数:10
相关论文
共 50 条
  • [11] Quantification of diffusion-weighted images (DWI) and apparent diffusion coefficient maps (ADC) in the detection of acute stroke
    Tulipano, P. Karina
    Millar, William S.
    Imielinska, Celina
    Liu, Xin
    Rosiene, Joel
    D'Ambrosio, Anthony L.
    MEDICAL IMAGING 2006: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES PTS 1 AND 2, 2006, 6143
  • [12] Diffusion-weighted imaging of malignant breast tumors - The usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension
    Woodhams, R
    Matsunaga, K
    Iwabuchi, K
    Kan, S
    Hata, H
    Kuranami, M
    Watanabe, M
    Hayakawa, K
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2005, 29 (05) : 644 - 649
  • [13] Diffusion-Weighted Imaging of Prostate Cancer: Correlation Between Apparent Diffusion Coefficient Values and Tumor Proliferation
    Wang, Xi Zhen
    Wang, Bin
    Gao, Zhi Qin
    Liu, Jin Gang
    Liu, Zuo Qin
    Niu, Qing Liang
    Sun, Zhen Kui
    Yuan, Yu Xiao
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 29 (06) : 1360 - 1366
  • [14] Surveillance Value of Apparent Diffusion Coefficient Maps: Multiparametric MRI in Active Surveillance of Prostate Cancer
    Georgiev, Aleksandar
    Chervenkov, Lyubomir
    Doykov, Mladen
    Doykova, Katya
    Uchikov, Petar
    Tsvetkova, Silvia
    CANCERS, 2023, 15 (04)
  • [15] MRI with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) assessment in the evaluation of normal and abnormal fetal kidneys: preliminary experience
    Savelli, Sara
    Di Maurizio, Marco
    Perrone, Anna
    Tesei, Jacopo
    Francioso, Antonella
    Angeletti, Marco
    La Barbera, Laura
    Ballesio, Laura
    de Felice, Carlo
    Porfiri, Lucio Maria
    Manganaro, Lucia
    PRENATAL DIAGNOSIS, 2007, 27 (12) : 1104 - 1111
  • [16] Diffusion-weighted imaging (DWI) in lymph node staging for prostate cancer
    Caglic, Iztok
    Barrett, Tristan
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2018, 7 (05) : 814 - 823
  • [17] Noninferiority of Monoparametric MRI Versus Multiparametric MRI for the Detection of Prostate Cancer Diagnostic Accuracy of ADC Ratios Based on Advanced "Zoomed" Diffusion-Weighted Imaging
    Raczeck, Paul
    Frenzel, Felix
    Woerner, Tobias
    Graeber, Stefan
    Bohle, Rainer M.
    Ziegler, Gesa
    Buecker, Arno
    Schneider, Guenther K.
    INVESTIGATIVE RADIOLOGY, 2022, 57 (04) : 233 - 241
  • [18] Diffusion-weighted imaging of prostate cancer
    Shimofusa, R
    Fujimoto, H
    Akamata, H
    Motoori, K
    Yamamoto, S
    Ueda, T
    Ito, H
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2005, 29 (02) : 149 - 153
  • [19] Diffusion-weighted imaging in prostate cancer
    Tamada, Tsutomu
    Ueda, Yu
    Ueno, Yoshiko
    Kojima, Yuichi
    Kido, Ayumu
    Yamamoto, Akira
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (04) : 533 - 547
  • [20] Diffusion-weighted imaging in prostate cancer
    Tsutomu Tamada
    Yu Ueda
    Yoshiko Ueno
    Yuichi Kojima
    Ayumu Kido
    Akira Yamamoto
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 533 - 547