Multi-omic molecular profiling of lung cancer in COPD

被引:24
|
作者
Sandri, Brian J. [1 ,6 ]
Kaplan, Adam [2 ,6 ]
Hodgson, Shane W. [3 ]
Peterson, Mark [1 ]
Avdulov, Svetlana [1 ]
Higgins, LeeAnn [4 ]
Markowski, Todd [4 ]
Yang, Ping [5 ]
Limper, Andrew H. [5 ]
Griffin, Timothy J. [4 ]
Bitterman, Peter [1 ]
Lock, Eric F. [2 ]
Wendt, Chris H. [1 ,3 ]
机构
[1] Univ Minnesota, Sch Med, Dept Med, Div Pulm Allergy Crit Care & Sleep Med, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[3] Vet Affairs Med Ctr, Pulm Allergy Crit Care & Sleep Med, Minneapolis, MN USA
[4] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA
[5] Mayo Clin, Div Epidemiol, Rochester, MN USA
[6] Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN USA
关键词
MAMMARY EPITHELIAL-CELLS; TRANSLATION INITIATION; EXTRACELLULAR-MATRIX; TUMOR-STROMA; FIBROBLASTS; PROGRESSION; EXPRESSION; CARCINOMA; EMPHYSEMA; OBSTRUCTION;
D O I
10.1183/13993003.02665-2017
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Chronic obstructive pulmonary disease (COPD) is a known risk factor for developing lung cancer but the underlying mechanisms remain unknown. We hypothesise that the COPD stroma contains molecular mechanisms supporting tumourigenesis. We conducted an unbiased multi-omic analysis to identify gene expression patterns that distinguish COPD stroma in patients with or without lung cancer. We obtained lung tissue from patients with COPD and lung cancer (tumour and adjacent non-malignant tissue) and those with COPD without lung cancer for profiling of proteomic and mRNA (both cytoplasmic and polyribosomal). We used the Joint and Individual Variation Explained (JIVE) method to integrate and analyse across the three datasets. JIVE identified eight latent patterns that robustly distinguished and separated the three groups of tissue samples (tumour, adjacent and control). Predictive variables that associated with the tumour, compared to adjacent stroma, were mainly represented in the transcriptomic data, whereas predictive variables associated with adjacent tissue, compared to controls, were represented at the translatomic level. Pathway analysis revealed extracellular matrix and phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B signalling pathways as important signals in the tumour adjacent stroma. The multi-omic approach distinguishes tumour adjacent stroma in lung cancer and reveals two stromal expression patterns associated with cancer.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Predictive Model for Postoperative Recurrence of Lung Cancer Based on Multi-omic Machine Learning
    Chen, Z.
    Chen, Z.
    Kang, J.
    Li, Y.
    Xiao, W.
    Chen, J.
    Mo, Y.
    Zhong, W.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S183 - S184
  • [42] Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling
    Pagliarini, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [43] Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling
    Jonathan A Stefely
    Nicholas W Kwiecien
    Elyse C Freiberger
    Alicia L Richards
    Adam Jochem
    Matthew J P Rush
    Arne Ulbrich
    Kyle P Robinson
    Paul D Hutchins
    Mike T Veling
    Xiao Guo
    Zachary A Kemmerer
    Kyle J Connors
    Edna A Trujillo
    Jacob Sokol
    Harald Marx
    Michael S Westphall
    Alexander S Hebert
    David J Pagliarini
    Joshua J Coon
    Nature Biotechnology, 2016, 34 : 1191 - 1197
  • [44] Accurate and affordable multi-cancer early detection and localization via plasma cfDNA multi-omic profiling
    Cui, Pin
    He, Weihuang
    Feng, Mingji
    Lai, Hanming
    LANCET REGIONAL HEALTH-WESTERN PACIFIC, 2025, 55 : 95 - 95
  • [45] Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development
    Chung, Changuk
    Yang, Xiaoxu
    Bae, Taejeong
    Vong, Keng Ioi
    Mittal, Swapnil H.
    Donkels, Catharina
    Westley Phillips, H.
    Li, Zhen
    Marsh, Ashley P. L.
    Breuss, Martin
    Ball, Laurel
    Garcia, Camila Araujo Bernardino
    George, Renee
    Gu, Jing
    Xu, Mingchu
    Barrows, Chelsea
    James, Kiely
    Stanley, Valentina
    Nidhiry, Anna
    Khoury, Sami
    Howe, Gabrielle
    Riley, Emily
    Xu, Xin
    Copeland, Brett
    Wang, Yifan G.
    Kim, Se Hoon L.
    Kang, Hoon-Chul W.
    Schulze-Bonhage, Andreas
    Haas, Carola
    Urbach, Horst
    Prinz, Marco
    Limbrick, David A.
    Gurnett, Christina
    Smyth, Matthew C.
    Sattar, Shifteh M.
    Nespeca, Mark B.
    Gonda, David V.
    Imai, Katsumi Y.
    Takahashi, Yukitoshi E.
    Chen, Hsin-Hung B.
    Tsai, Jin-Wu
    Conti, Valerio
    Guerrini, Renzo
    Devinsky, Orrin
    Silva, Wilson
    Machado, Helio M.
    Mathern, Gary
    Abyzov, Alexej
    Baldassari, Sara
    Baulac, Stephanie
    NATURE GENETICS, 2023, 55 (02) : 209 - +
  • [46] Multi-omic profiling of pathogen-stimulated primary immune cells
    Salz, Renee
    Vorsteveld, Emil E.
    van der Made, Caspar I.
    Kersten, Simone
    Stemerdink, Merel
    Riepe, Tabea, V
    Hsieh, Tsung-han
    Mhlanga, Musa
    Netea, Mihai G.
    Volders, Pieter-Jan
    Hoischen, Alexander
    't Hoen, Peter A. C.
    ISCIENCE, 2024, 27 (08)
  • [47] Multi-Omic Profiling Of Asthma Using High-Throughput Sequencing
    Dhondalay, Gopal Krishna
    Bunning, Bryan J.
    Nadeau, Kari C.
    Andorf, Sandra
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2019, 143 (02) : AB203 - AB203
  • [48] Defining mitochondrial protein functions through deep multi-omic profiling
    Pagliarini, David J.
    MOLECULAR & CELLULAR PROTEOMICS, 2022, 21 (08) : S21 - S21
  • [49] Methods for multi-omic data integration in cancer research
    Hernandez-Lemus, Enrique
    Ochoa, Soledad
    FRONTIERS IN GENETICS, 2024, 15
  • [50] Multi-Omic Profiling of Multi-Biosamples Reveals the Role of Amino Acid and Nucleotide Metabolism in Endometrial Cancer
    Yi, Runqiu
    Xie, Liying
    Wang, Xiaoqing
    Shen, Chengpin
    Chen, Xiaojun
    Qiao, Liang
    FRONTIERS IN ONCOLOGY, 2022, 12