Multi-omic molecular profiling of lung cancer in COPD

被引:24
|
作者
Sandri, Brian J. [1 ,6 ]
Kaplan, Adam [2 ,6 ]
Hodgson, Shane W. [3 ]
Peterson, Mark [1 ]
Avdulov, Svetlana [1 ]
Higgins, LeeAnn [4 ]
Markowski, Todd [4 ]
Yang, Ping [5 ]
Limper, Andrew H. [5 ]
Griffin, Timothy J. [4 ]
Bitterman, Peter [1 ]
Lock, Eric F. [2 ]
Wendt, Chris H. [1 ,3 ]
机构
[1] Univ Minnesota, Sch Med, Dept Med, Div Pulm Allergy Crit Care & Sleep Med, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[3] Vet Affairs Med Ctr, Pulm Allergy Crit Care & Sleep Med, Minneapolis, MN USA
[4] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA
[5] Mayo Clin, Div Epidemiol, Rochester, MN USA
[6] Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN USA
关键词
MAMMARY EPITHELIAL-CELLS; TRANSLATION INITIATION; EXTRACELLULAR-MATRIX; TUMOR-STROMA; FIBROBLASTS; PROGRESSION; EXPRESSION; CARCINOMA; EMPHYSEMA; OBSTRUCTION;
D O I
10.1183/13993003.02665-2017
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Chronic obstructive pulmonary disease (COPD) is a known risk factor for developing lung cancer but the underlying mechanisms remain unknown. We hypothesise that the COPD stroma contains molecular mechanisms supporting tumourigenesis. We conducted an unbiased multi-omic analysis to identify gene expression patterns that distinguish COPD stroma in patients with or without lung cancer. We obtained lung tissue from patients with COPD and lung cancer (tumour and adjacent non-malignant tissue) and those with COPD without lung cancer for profiling of proteomic and mRNA (both cytoplasmic and polyribosomal). We used the Joint and Individual Variation Explained (JIVE) method to integrate and analyse across the three datasets. JIVE identified eight latent patterns that robustly distinguished and separated the three groups of tissue samples (tumour, adjacent and control). Predictive variables that associated with the tumour, compared to adjacent stroma, were mainly represented in the transcriptomic data, whereas predictive variables associated with adjacent tissue, compared to controls, were represented at the translatomic level. Pathway analysis revealed extracellular matrix and phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B signalling pathways as important signals in the tumour adjacent stroma. The multi-omic approach distinguishes tumour adjacent stroma in lung cancer and reveals two stromal expression patterns associated with cancer.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Digital Pathology Uncovers Multi-Omic Hallmarks of Lung Cancer in Histopathology Images
    Guramare, M.
    Javed, S. A.
    Agrawal, N.
    Griffin, M.
    Abel, J.
    Montalto, M.
    Beck, A. H.
    Mountain, V.
    Wapinski, I.
    Resnick, M.
    Biddle-Snead, C.
    Conway, J. R.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S158 - S158
  • [32] Commentary: Molecular responses in pig heart to human xenotransplantation unveiled by longitudinal multi-omic profiling
    Keating, Brendan J.
    Schmauch, Eloi
    Snyder, Michael P.
    Motter, Jennifer D.
    Piening, Brian D.
    CLINICAL AND TRANSLATIONAL MEDICINE, 2025, 15 (01):
  • [33] A Multi-Omic Approach to Understanding the Molecular Landscape of IPF
    Konigsberg, I. R.
    Borie, R.
    Cardwell, J.
    Walts, A.
    Powers, J.
    Brancato, J.
    Rojas, M.
    Wolters, P. J.
    Brown, K. K.
    Blackwell, T. S.
    Fingerlin, T. E.
    Schwartz, D. A.
    Yang, I. V.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [34] Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer
    Yan, Yilv
    Sun, Dongqing
    Hu, Junjie
    Chen, Yue
    Sun, Liangdong
    Yu, Huansha
    Xiong, Yicheng
    Huang, Zhida
    Xia, Haoran
    Zhu, Xinsheng
    Bian, Dongliang
    Sun, Fenghuan
    Hou, Likun
    Wu, Chunyan
    Fan, Orion R.
    Hu, Haiyang
    Zeng, An
    Zhang, Lele
    Sun, Yi Eve
    Wang, Chenfei
    Zhang, Peng
    NATURE GENETICS, 2025, 57 (01) : 126 - 139
  • [35] Using multi-omic profiling to unravel the complexity of triple-negative breast cancer (TNBC)
    Goel, Shorn
    Brauer, Heather Ann
    Ren, Yuqi
    Gorman, Kara
    Osmani, Wafa
    Pittenger, Jessica
    Andrews, Chelsea
    Richardson, Edward T., III
    Mittendorf, Elizabeth A.
    Winer, Eric P.
    Schnitt, Stuart
    Tolaney, Sara M.
    CANCER RESEARCH, 2020, 80 (04)
  • [36] Predicting response to treatment in early breast cancer using dynamic integrative multi-omic profiling
    Sammut, Stephen-John
    Crispin-Ortuzar, Mireia
    Chin, Suet-Feung
    Provenzano, Elena
    Cope, Wei
    Dariush, Ali
    Dawson, Sarah-Jane
    Pharoah, Paul D.
    Markowetz, Florian
    Rueda, Oscar M.
    Earl, Helena M.
    Caldas, Carlos
    CANCER RESEARCH, 2022, 82 (12)
  • [37] Breast cancer multi-omic single cell profiling identifies key progressive disease markers
    Russell, Hugh
    Rao, Manisha
    Duclos, Grant
    Aguilar, Rogelio
    Barkas, Nick
    Callahan, Megan
    Chaudhary, Ojasvi
    Gathungu, Peter
    Rands, Chris
    Shankarappa, Varsha
    Stetson, Daniel
    Rotem, Asaf
    Scaltriti, Maurizio
    Dougherty, Brian
    CANCER RESEARCH, 2024, 84 (06)
  • [38] Multi-omic approaches to study the role of plasticity in therapy resistance and metastasis in lung cancer
    Quintanal-Villalonga, Alvaro
    Chan, Joseph M.
    Gao, Vianne R.
    Xie, Yubin
    Pe'er, Dana
    Rudin, Charles M.
    CANCER RESEARCH, 2023, 83 (07)
  • [39] Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling
    Stefely, Jonathan A.
    Kwiecien, Nicholas W.
    Freiberger, Elyse C.
    Richards, Alicia L.
    Jochem, Adam
    Rush, Matthew J. P.
    Ulbrich, Arne
    Robinson, Kyle P.
    Hutchins, Paul D.
    Veling, Mike T.
    Guo, Xiao
    Kemmerer, Zachary A.
    Connors, Kyle J.
    Trujillo, Edna A.
    Sokol, Jacob
    Marx, Harald
    Westphall, Michael S.
    Hebert, Alexander S.
    Pagliarini, David J.
    Coon, Joshua J.
    NATURE BIOTECHNOLOGY, 2016, 34 (11) : 1191 - +
  • [40] Multi-omic profiling reveals differential kinase activity in neuronal differentiation
    Kuchenov, Dmitry
    Zaltsman, Fima
    Willsey, Jeremy
    Huttenhain, Ruth
    Krogan, Nevan
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (08) : S61 - S61