An effective genetic algorithm approach to the quadratic minimum spanning tree problem

被引:62
|
作者
Zhou, GG [1 ]
Gen, M [1 ]
机构
[1] Ashikaga Inst Technol, Dept Ind & Syst Engn, Ashikaga 236, Japan
关键词
D O I
10.1016/S0305-0548(97)00039-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a new approach to solve the q-MST problem by using a genetic algorithm. A skillful encoding for trees, denoted by Prufer number, is adopted for GA operation. On comparing with the existing heuristic algorithms by 17 randomly generated numerical examples from 6-vertex graph to 50-vertex graph, the new GA approach shows its high effectiveness in solving the q-MST problem and real value in the practical network optimization. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 50 条
  • [31] A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem
    Singh, Kavita
    Sundar, Shyam
    [J]. SOFT COMPUTING, 2020, 24 (03) : 2169 - 2186
  • [32] A characterization of linearizable instances of the quadratic minimum spanning tree problem
    Ante Ćustić
    Abraham P. Punnen
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 436 - 453
  • [33] A new algorithm for the minimum spanning tree verification problem
    Williamson, Matthew
    Subramani, K.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 189 - 204
  • [34] A Distributed Parallel Algorithm for the Minimum Spanning Tree Problem
    Mazeev, Artem
    Semenov, Alexander
    Simonov, Alexey
    [J]. PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2017, 2017, 753 : 101 - 113
  • [35] A new algorithm for the minimum spanning tree verification problem
    Matthew Williamson
    K. Subramani
    [J]. Computational Optimization and Applications, 2015, 61 : 189 - 204
  • [36] An Algorithm for the Minimum Spanning Tree Problem with Uncertain Structures
    Hernandes, F.
    Lourenco, M. H. R. S.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (12) : 3885 - 3889
  • [37] A memetic algorithm for the biobjective minimum spanning tree problem
    Rocha, Daniel A. M.
    Gouvea Goldbarg, Elizabeth F.
    Goldbarg, Marco Cesar
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2006, 3906 : 222 - 233
  • [38] A New Hybrid Genetic Algorithm for Solving the Bounded Diameter Minimum Spanning Tree Problem
    Huynh Thi Thanh Binh
    Nguyen Xuan, Hoai
    McKay, R. I.
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3128 - +
  • [39] A biased random-key genetic algorithm for the capacitated minimum spanning tree problem
    Ruiz, Efrain
    Albareda-Sambola, Maria
    Fernandez, Elena
    Resende, Mauricio G. C.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2015, 57 : 95 - 108
  • [40] A Hybrid Steady-State Genetic Algorithm for the Minimum Conflict Spanning Tree Problem
    Chaubey, Punit Kumar
    Sundar, Shyam
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 192 - 205