A characterization of linearizable instances of the quadratic minimum spanning tree problem

被引:0
|
作者
Ante Ćustić
Abraham P. Punnen
机构
[1] Simon Fraser University Surrey,Department of Mathematics
来源
关键词
Minimum spanning tree; Quadratic 0–1 problems; Quadratic minimum spanning tree; Polynomially solvable cases; Linearization;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate special cases of the quadratic minimum spanning tree problem (QMSTP) on a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} that can be solved as a linear minimum spanning tree problem. We give a characterization of such problems when G is a complete graph, which is the standard case in the QMSTP literature. We extend our characterization to a larger class of graphs that include complete bipartite graphs and cactuses, among others. Our characterization can be verified in O(|E|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|E|^2)$$\end{document} time. In the case of complete graphs and when the cost matrix is given in factored form, we show that our characterization can be verified in O(|E|) time. Related open problems are also indicated.
引用
收藏
页码:436 / 453
页数:17
相关论文
共 50 条
  • [1] A characterization of linearizable instances of the quadratic minimum spanning tree problem
    Custic, Ante
    Punnen, Abraham P.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 436 - 453
  • [2] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    [J]. NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [3] Fuzzy quadratic minimum spanning tree problem
    Gao, JW
    Lu, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (03) : 773 - 788
  • [4] Solving the Quadratic Minimum Spanning Tree Problem
    Cordone, Roberto
    Passeri, Gianluca
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11597 - 11612
  • [5] Stochastic quadratic minimum spanning tree problem
    Lu, Mei
    Gao, Jinwu
    [J]. Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 179 - 183
  • [6] A linearization method for quadratic minimum spanning tree problem
    Yu, Jing-Rung
    Shi, Ren-Xiang
    Sheu, Her-Jiun
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2008, 10 (04) : 287 - 291
  • [7] METAHEURISTIC APPROACHES FOR THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    Palubeckis, Gintaras
    Rubliauskas, Dalius
    Targamadze, Aleksandras
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2010, 39 (04): : 257 - 268
  • [8] The quadratic minimum spanning tree problem and its variations
    Custic, Ante
    Zhang, Ruonan
    Punnen, Abraham P.
    [J]. DISCRETE OPTIMIZATION, 2018, 27 : 73 - 87
  • [9] A swarm intelligence approach to the quadratic minimum spanning tree problem
    Sundar, Shyam
    Singh, Alok
    [J]. INFORMATION SCIENCES, 2010, 180 (17) : 3182 - 3191
  • [10] Rough-fuzzy quadratic minimum spanning tree problem
    Majumder, Saibal
    Kar, Samarjit
    Pal, Tandra
    [J]. EXPERT SYSTEMS, 2019, 36 (02)