TARGETED INCORPORATING SPATIAL INFORMATION IN SPARSE SUBSPACE CLUSTERING OF HYPERSPECTRAL REMOTE SENSING IMAGES

被引:0
|
作者
Zhan, Jiaqiyu [1 ]
Zhu, Yuesheng [1 ]
Bai, Zhiqiang [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Commun & Informat Secur Lab, Beijing, Peoples R China
关键词
Hyperspectral image; sparse subspace clustering; spatial information; sparse representation;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Methods based on sparse subspace clustering (SSC) have shown great potential for hyperspectral image (HSI) clustering. However their performance is limited due to the complex spatial-spectral structure in HSIs. In this paper, a spatial best-fit direction (SBFD) algorithm is proposed to update the coefficients obtained from sparse representation to more discriminant features by integrating the spatial-contextual information given by the best-fit pixel of each target pixel. Also, SBFD is more targeted by searching for the best-fit direction than directly using the local window to do max pooling. The proposed SBFD was tested on two widely used hyperspectral dataset, the experimental results indicate its improvement in the clustering accuracy and spatial homogeneity.
引用
收藏
页码:2531 / 2535
页数:5
相关论文
共 50 条
  • [1] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [2] Spectral-Spatial Clustering of Hyperspectral Remote Sensing Image with Sparse Subspace Clustering Model
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    Xu, Xiong
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [3] Semisupervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 989 - 999
  • [4] A New Sparse Subspace Clustering Algorithm for Hyperspectral Remote Sensing Imagery
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) : 43 - 47
  • [5] Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation
    Zhai, Han
    Zhang, Hongyan
    Xu, Xiong
    Zhang, Liangpei
    Li, Pingxiang
    [J]. REMOTE SENSING, 2017, 9 (04):
  • [6] Efficient sparse subspace clustering for polarized hyperspectral images
    Chen, Zhengyi
    Zhang, Chunmin
    [J]. THIRD INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2019, 11052
  • [7] Sparse Subspace Clustering for Hyperspectral Images with Missing Pixels
    Bacca, Jorge
    Sanchez, Karen
    Arguello, Henry
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [8] Class Probability Propagation of Supervised Information Based on Sparse Subspace Clustering for Hyperspectral Images
    Yan, Qing
    Ding, Yun
    Xia, Yi
    Chong, Yanwen
    Zheng, Chunhou
    [J]. REMOTE SENSING, 2017, 9 (10)
  • [9] JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3878 - 3882
  • [10] SKETCHED SPARSE SUBSPACE CLUSTERING FOR LARGE-SCALE HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1766 - 1770