Total pitchfork domination and its inverse in graphs

被引:6
|
作者
Abdlhusein, Mohammed A. [1 ,2 ]
Al-Harere, Manal N. [3 ]
机构
[1] Baghdad Univ, Coll Educ Pure Sci Ibn Al Haitham, Dept Math, Baghdad, Iraq
[2] Thi Qar Univ, Coll Educ Pure Sci, Dept Math, Thi Qar, Iraq
[3] Univ Technol Baghdad, Dept Appl Sci, Baghdad, Iraq
关键词
Total pitchfork domination; inverse total pitchfork domination; pitchfork domination; total domination;
D O I
10.1142/S1793830921500385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New two domination types are introduced in this paper. Let G = (V,E) be a finite, simple, and undirected graph without isolated vertex. A dominating subset D subset of V (G) is a total pitchfork dominating set if 1 <= vertical bar N(u) boolean AND V - D vertical bar <= 2 for every u is an element of D and G[D] has no isolated vertex. D-1 subset of V - D is an inverse total pitchfork dominating set if D-1 is a total pitchfork dominating set of G. The cardinality of a minimum (inverse) total pitchfork dominating set is the (inverse) total pitchfork domination number (gamma(-t)(pf)(G)) gamma(t)(pf)(G). Some properties and bounds are studied associated with maximum degree, minimum degree, order, and size of the graph. These modified domination parameters are applied on some standard and complement graphs.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Restricted total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 25 - 44
  • [42] Disjunctive total domination in graphs
    Henning, Michael A.
    Naicker, Viroshan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1090 - 1110
  • [43] On matching and total domination in graphs
    Henning, Michael A.
    Kang, Liying
    Shan, Erfang
    Yeo, Anders
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2313 - 2318
  • [44] Minus total domination in graphs
    Hua-Ming Xing
    Hai-Long Liu
    Czechoslovak Mathematical Journal, 2009, 59 : 861 - 870
  • [45] Unique total domination graphs
    Fischermann, M
    ARS COMBINATORIA, 2004, 73 : 289 - 297
  • [46] On a Conjecture about Inverse Domination in Graphs
    Frendrup, Allan
    Henning, Michael A.
    Randerath, Bert
    Vestergaard, Preben Dahl
    ARS COMBINATORIA, 2010, 97A : 129 - 143
  • [47] Inverse double Roman domination in graphs
    D' Souza, Wilma Laveena
    Chaitra, V
    Kumara, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [48] Inverse domination in bipolar fuzzy graphs
    Kalaiselvan, S.
    Kumar N, Vinoth
    Revathy, P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 2071 - 2075
  • [49] The inverse strong nonsplit domination in graphs
    Packiarani, D. Kiruba
    Mary, Y. Therese Sunitha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (06)
  • [50] Signed total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 109 - 125