Total pitchfork domination and its inverse in graphs

被引:6
|
作者
Abdlhusein, Mohammed A. [1 ,2 ]
Al-Harere, Manal N. [3 ]
机构
[1] Baghdad Univ, Coll Educ Pure Sci Ibn Al Haitham, Dept Math, Baghdad, Iraq
[2] Thi Qar Univ, Coll Educ Pure Sci, Dept Math, Thi Qar, Iraq
[3] Univ Technol Baghdad, Dept Appl Sci, Baghdad, Iraq
关键词
Total pitchfork domination; inverse total pitchfork domination; pitchfork domination; total domination;
D O I
10.1142/S1793830921500385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New two domination types are introduced in this paper. Let G = (V,E) be a finite, simple, and undirected graph without isolated vertex. A dominating subset D subset of V (G) is a total pitchfork dominating set if 1 <= vertical bar N(u) boolean AND V - D vertical bar <= 2 for every u is an element of D and G[D] has no isolated vertex. D-1 subset of V - D is an inverse total pitchfork dominating set if D-1 is a total pitchfork dominating set of G. The cardinality of a minimum (inverse) total pitchfork dominating set is the (inverse) total pitchfork domination number (gamma(-t)(pf)(G)) gamma(t)(pf)(G). Some properties and bounds are studied associated with maximum degree, minimum degree, order, and size of the graph. These modified domination parameters are applied on some standard and complement graphs.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] DOMINATION INTEGRITY OF TOTAL GRAPHS
    Vaidya, S. K.
    Shah, N. H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 117 - 126
  • [32] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [33] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [34] Total Domination Value in Graphs
    Kang, Cong X.
    UTILITAS MATHEMATICA, 2014, 95 : 263 - 279
  • [35] Weak Total Domination in Graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2014, 94 : 221 - 236
  • [36] Roman and inverse Roman domination in graphs
    Zaman, Zulfiqar
    Kumar, M. Kamal
    Ahmad, Saad Salman
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 142 - 150
  • [37] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    ARS COMBINATORIA, 2012, 107 : 473 - 492
  • [38] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [39] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    1600, Charles Babbage Research Centre (112): : 231 - 240
  • [40] Total mixed domination in graphs
    Kazemi, Adel P.
    Kazemnejad, Farshad
    Moradi, Somayeh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 229 - 237