Global existence and blowup for a class of the focusing nonlinear Schrodinger equation with inverse-square potential

被引:16
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, Inst Math Toulouse, UMR5219, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Nonlinear Schrodinger equation; Inverse-square potential; Global existence; Blowup; Virial identity; Gagliardo-Nirenherg inequality; CAUCHY-PROBLEM; ENERGY METHODS; CRITICAL POWER; MINIMAL MASS; CRITICAL NLS; UP SOLUTIONS; SCATTERING; DIMENSIONS; H-1;
D O I
10.1016/j.jmaa.2018.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of the focusing nonlinear Schrodinger equation with inverse square potential i partial derivative(t)u + Delta u - c vertical bar x vertical bar(-2)u = vertical bar u vertical bar(alpha)u, u(0) = u(0) is an element of H-1, (t, x) is an element of R x R-d, where d >= 3, 4/d <= alpha <= 4/d-2 and c not equal 0 satisfies c > -lambda(d) := - (d-2/2)(2). In the mass-critical case alpha = 4/d, we prove the global existence and blowup below ground states for the equation with d >= 3 and c > -lambda(d). In the mass and energy intercritical case 4/d < alpha < 4/d-2, we prove the global existence and blowup below the ground state threshold for the equation. This extends similar results of [18] and [22] to any dimensions d >= 3 and a full range c > -lambda(d). We finally prove the blowup below ground states for the equation in the energy-critical case alpha = 4/d-2 with d >= 3 and c > -d(2)+4d/(d+2)(2) lambda(d). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:270 / 303
页数:34
相关论文
共 50 条