Global existence and blowup for a class of the focusing nonlinear Schrodinger equation with inverse-square potential
被引:16
|
作者:
Van Duong Dinh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, CNRS, Inst Math Toulouse, UMR5219, F-31062 Toulouse 9, France
HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, VietnamUniv Toulouse, CNRS, Inst Math Toulouse, UMR5219, F-31062 Toulouse 9, France
Van Duong Dinh
[1
,2
]
机构:
[1] Univ Toulouse, CNRS, Inst Math Toulouse, UMR5219, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
Nonlinear Schrodinger equation;
Inverse-square potential;
Global existence;
Blowup;
Virial identity;
Gagliardo-Nirenherg inequality;
CAUCHY-PROBLEM;
ENERGY METHODS;
CRITICAL POWER;
MINIMAL MASS;
CRITICAL NLS;
UP SOLUTIONS;
SCATTERING;
DIMENSIONS;
H-1;
D O I:
10.1016/j.jmaa.2018.08.006
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider a class of the focusing nonlinear Schrodinger equation with inverse square potential i partial derivative(t)u + Delta u - c vertical bar x vertical bar(-2)u = vertical bar u vertical bar(alpha)u, u(0) = u(0) is an element of H-1, (t, x) is an element of R x R-d, where d >= 3, 4/d <= alpha <= 4/d-2 and c not equal 0 satisfies c > -lambda(d) := - (d-2/2)(2). In the mass-critical case alpha = 4/d, we prove the global existence and blowup below ground states for the equation with d >= 3 and c > -lambda(d). In the mass and energy intercritical case 4/d < alpha < 4/d-2, we prove the global existence and blowup below the ground state threshold for the equation. This extends similar results of [18] and [22] to any dimensions d >= 3 and a full range c > -lambda(d). We finally prove the blowup below ground states for the equation in the energy-critical case alpha = 4/d-2 with d >= 3 and c > -d(2)+4d/(d+2)(2) lambda(d). (C) 2018 Elsevier Inc. All rights reserved.
机构:
China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Hubei, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Hubei, Peoples R China
Chen, Peng
Chen, Huimao
论文数: 0引用数: 0
h-index: 0
机构:
China Three Gorges Univ, Coll Sci, Yichang 443002, Hubei, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Hubei, Peoples R China
Chen, Huimao
Tang, Xianhua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Hubei, Peoples R China
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China
Gan, Zaihui
Guo, Boling
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China
Guo, Boling
Zhang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China