High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3-δ anode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon

被引:49
|
作者
Li, Jingwei [1 ]
Wei, Bo [1 ]
Wang, Chaoqi [1 ]
Zhou, Ziyu [1 ]
Lu, Zhe [1 ]
机构
[1] Harbin Inst Technol, Dept Phys, 92 Xi Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Direct carbon-solid oxide fuel cell (DC-SOFC); Perovskite anode; Carbon fuel; Corn straw carbon; Electrochemical performance; COAL CHAR; CONVERSION; ELECTRODES; OXIDATION; BIOFUEL; BIOMASS; DCFC;
D O I
10.1016/j.ijhydene.2018.04.176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The novel perovskite La0.8Sr0.2Fe0.9Nb0.1O3-delta (LSFNb) anode for direct carbon-solid oxide fuel cells (DC-SOFCs) is evaluated using activated carbon and corn straw carbon as fuels. Activated carbon possesses less ratio of disorder carbon, smaller average particle size and much higher specific surface area, as well as porous structure with micropores and mesopores compared with corn straw carbon. Electrolyte-supported DC-SOFCs with LSFNb anode demonstrate excellent performance with peak power densities of 302.8 mW cm(-2) and 218.5 mW cm(-2), respectively, when operated with activated carbon and corn straw carbon at 850 degrees C. Polarization resistances of LSFNb anode indicate that performance of DC-SOFCs is largely determined by the reverse Boudouard reaction, which is related to specific surface area of fuels. Cells fueled by corn straw carbon exhibit more stable output, higher released electric quantity and higher fuel utilization rate than that using activated carbon. Despite more disorder carbon and better thermal reactivity of corn straw carbon, higher initial output performance is obtained with activated carbon, proving that specific surface area of fuels, particle size and porosity have a considerable influence on the reverse Boudouard reaction and cell performance. These results indicate that LSFNb is a promising perovskite anode material for DC-SOFC. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12358 / 12367
页数:10
相关论文
共 50 条
  • [21] Operational Inhomogeneities in La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolytes and La0.8Sr0.2Cr0.82Ru0.18O3-δ-Ce0.9Gd0.1O2-δ Composite Anodes for Solid Oxide Fuel Cells
    Liao, Y.
    Bierschenk, D. M.
    Barnett, S. A.
    Marks, L. D.
    FUEL CELLS, 2011, 11 (05) : 635 - 641
  • [22] Synthesis of La0.8Sr0.2Co0.8Fe 0.2O3 nanopowders and their application in solid oxide fuel cells
    Ding, Changsheng
    Lin, Hongfei
    Sato, Kazuhisa
    Hashida, Toshiyuki
    IOP Conference Series: Materials Science and Engineering, 2011, 18 (SYMPOSIUM 9B):
  • [23] High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3-δ as cathode
    Li, Jiao
    Yang, Chenghao
    Liu, Meilin
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 19397 - 19401
  • [24] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [25] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    Solovyev, A. A.
    Ionov, I. V.
    Shipilova, A. V.
    Maloney, P. D.
    JOURNAL OF ELECTROCERAMICS, 2018, 40 (02) : 150 - 155
  • [26] Electrochemical performance and redox stability of Sr0.8La0.2TiO3-Ce0.9Gd0.1O2-δ composite anodes for solid oxide fuel cells
    Rath, Manasa K.
    Koo, Ji-Hoon
    Lee, Ki-Tae
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2016, 17 (08): : 837 - 839
  • [27] In Situ Exsolved Ni-Decorated Ba(Ce0.9Y0.1)0.8Ni0.2O3-δ Perovskite as Carbon-Resistant Composite Anode for Hydrocarbon-Fueled Solid Oxide Fuel Cells
    Liu, Yanya
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    ACS OMEGA, 2019, 4 (25): : 21494 - 21499
  • [28] Performance of Y0.9Sr0.1Cr0.9Fe0.1O3-δ as a sulfur-tolerant anode material for intermediate temperate solid oxide fuel cells
    Bu, Yun-Fei
    Zhong, Qin
    Xu, Dan-Dan
    Zhao, Xiao-Lu
    Tan, Wen-Yi
    JOURNAL OF POWER SOURCES, 2014, 250 : 143 - 151
  • [29] Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells
    Kim, Ju Hee
    Park, Young Min
    Kim, Taejin
    Kim, Haekyoung
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 29 (03) : 349 - 355
  • [30] Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells
    Ju Hee Kim
    Young Min Park
    Taejin Kim
    Haekyoung Kim
    Korean Journal of Chemical Engineering, 2012, 29 : 349 - 355