Electrochemical performance and redox stability of Sr0.8La0.2TiO3-Ce0.9Gd0.1O2-δ composite anodes for solid oxide fuel cells

被引:0
|
作者
Rath, Manasa K. [1 ]
Koo, Ji-Hoon [1 ]
Lee, Ki-Tae [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Div Adv Mat Engn, Jeonju 54896, South Korea
[2] Chonbuk Natl Univ, Hydrogen & Fuel Cell Res Ctr, Jeonju 54896, South Korea
来源
关键词
Solid oxide fuel cell; Composite anode; Percolation; Redox stability; SOFC; LA0.3SR0.7TIO3; PATHWAY;
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sr0.8La0.2TiO3-Ce0.9Gd0.1O2-delta (SLT-GDC) composite anodes were synthesized by solid state reaction and the effect of percolation on electro-catalytic activity and redox stability was investigated. The percolation threshold of Sr0.8La0.2TiO3 and Ce0.9Gd0.1O2-delta in the composite calculated based on the Kusy's percolation theory is 10.7 vol.% and 17.4 vol.%, respectively. The area specific resistance (ASR) of the SLT-GDC composite anode at 800 degrees C in H-2 decreased up to 15 vol.% GDC in a SLT matrix because GDC has a much higher electro-catalytic activity than SLT. However, the samples which showed GDC percolation, including samples with 20 and 33 vol.% GDC in a SLT matrix, showed very high ASR values. The lowest ASR value was obtained for the anode with 15 vol.% GDC in a SLT matrix because this anode showed a mixed percolation region and had good connectivity to both electronic and ionic compounds. Moreover, the anode with the 15 vol.% GDC in a SLT matrix has very stable activity with a deviation of only 0.5% in ASR during repeated redox cycling.
引用
收藏
页码:837 / 839
页数:3
相关论文
共 50 条