Low Temperature Applications for CO2 Capture in Hydrogen Production

被引:4
|
作者
Kim, Donghoi [1 ]
Berstad, David [2 ]
Anantharaman, Rahul [2 ]
Straus, Julian [2 ]
Peters, Thijs A. [3 ]
Gundersen, Truls [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[2] SINTEF Energy Res, N-7465 Trondheim, Norway
[3] SINTEF Ind, N-0314 Oslo, Norway
关键词
Low temperature separation; CO2; capture; hydrogen production; liquefaction; CCS;
D O I
10.1016/B978-0-12-823377-1.50075-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The recent development of the protonic membrane reformer (PMR) technology allows an energy efficient hydrogen production from natural gas. To liquefy and separate CO2 from the retentate gas of the PMR, various low temperature processes are modelled and compared. The optimization results indicate that the single mixed refrigerant based process gives the smallest power consumption and fewest number of units. The cascade and the self-liquefaction processes can be considered as alternatives when the retentate gas is rich and lean in CO2 respectively.
引用
收藏
页码:445 / 450
页数:6
相关论文
共 50 条
  • [41] Kinetic modeling of crude oil gasification for hydrogen production with in situ CO2 capture
    Peng, Bo
    Gao, Wei
    Motamedi, Navid
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (13) : 1403 - 1407
  • [42] Multiobjective Optimization of a Hydrogen Production System with Low CO2 Emissions
    Wu, Wei
    Liou, Yan-Chi
    Zhou, Ya-Yan
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (06) : 2644 - 2651
  • [43] Pathways for production of CO2 and CO in low-temperature oxidation of coal
    Wang, HH
    Dlugogorski, BZ
    Kennedy, EM
    [J]. ENERGY & FUELS, 2003, 17 (01) : 150 - 158
  • [44] Production of hydrogen peroxide in CO2
    Hâncu, D
    Beckman, EJ
    [J]. REACTION ENGINEERING FOR POLLUTION PREVENTION, 2000, : 191 - 203
  • [45] Co-production system of hydrogen and electricity based on coal partial gasification with CO2 capture
    Xu, Yujie
    Zang, Guiyan
    Chen, Haisheng
    Dou, Binlin
    Tan, Chunqing
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (16) : 11805 - 11814
  • [46] Energy conversion analysis of hydrogen and electricity co-production coupled with in situ CO2 capture
    Wang, Xun
    Wang, Tianjiao
    [J]. ENERGY FOR SUSTAINABLE DEVELOPMENT, 2012, 16 (04) : 421 - 429
  • [47] Low-Temperature Desorption of CO2 from Carbamic Acid for CO2 Condensation by Direct Air Capture
    Cao, Furong
    Kikkawa, Soichi
    Yamada, Hidetaka
    Kawasoko, Hideyuki
    Yamazoe, Seiji
    [J]. ACS OMEGA, 2024, 9 (38): : 40075 - 40081
  • [48] Low Energy CO2 Capture by Electrodialysis
    Taniguchi, Ikuo
    Yamada, Takahiro
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1615 - 1620
  • [49] Directed Hydrogen Bond Placement: Low Viscosity Amine Solvents for CO2 Capture
    Malhotra, Deepika
    Cantu, David C.
    Koech, Phillip K.
    Heldebrant, David J.
    Karkamkar, Abhijeet
    Zheng, Feng
    Bearden, Mark D.
    Rousseau, Roger
    Glezakou, Vassiliki-Alexandra
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08): : 7535 - 7542
  • [50] Electrochemical CO2 Capture and Storage With Hydrogen Generation
    Rau, Greg H.
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 823 - 828