Low Temperature Applications for CO2 Capture in Hydrogen Production

被引:4
|
作者
Kim, Donghoi [1 ]
Berstad, David [2 ]
Anantharaman, Rahul [2 ]
Straus, Julian [2 ]
Peters, Thijs A. [3 ]
Gundersen, Truls [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[2] SINTEF Energy Res, N-7465 Trondheim, Norway
[3] SINTEF Ind, N-0314 Oslo, Norway
关键词
Low temperature separation; CO2; capture; hydrogen production; liquefaction; CCS;
D O I
10.1016/B978-0-12-823377-1.50075-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The recent development of the protonic membrane reformer (PMR) technology allows an energy efficient hydrogen production from natural gas. To liquefy and separate CO2 from the retentate gas of the PMR, various low temperature processes are modelled and compared. The optimization results indicate that the single mixed refrigerant based process gives the smallest power consumption and fewest number of units. The cascade and the self-liquefaction processes can be considered as alternatives when the retentate gas is rich and lean in CO2 respectively.
引用
收藏
页码:445 / 450
页数:6
相关论文
共 50 条
  • [11] NOVEL LOW TEMPERATURE CERAMICS FOR CO2 CAPTURE
    Sarma, Hutha
    Ogunwumi, Steven
    [J]. ADVANCES IN BIOCERAMICS AND POROUS CERAMICS VII, 2015, : 165 - 172
  • [12] Hydrogen Production via Steam Reforming with CO2 Capture
    Collodi, Guido
    [J]. CISAP4: 4TH INTERNATIONAL CONFERENCE ON SAFETY & ENVIRONMENT IN PROCESS INDUSTRY, 2010, 19 : 37 - 42
  • [13] Production of hydrogen and electricity from coal with CO2 capture
    Kreutz, TG
    Williams, RH
    Socolow, RH
    Chiesa, P
    Lozza, G
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 141 - 147
  • [14] Low temperature sugar cane bagasse pyrolysis for the production of high purity hydrogen through steam reforming and CO2 capture
    Lopez Ortiz, A.
    Neri Segura, F. J.
    Sandoval Jabalera, R.
    Marques da Silva Paula, M.
    Arias del Campo, E.
    Salinas Gutierrez, J.
    Escobedo Bretado, M. A.
    Collins-Martinez, V.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (28) : 12580 - 12588
  • [15] Heterogeneous systems for low temperature CO2 capture and hydrogenation
    Eady, Shawn
    Silbaugh, Trent
    Barteau, Mark
    Thompson, Levi
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [16] Solvents with low critical solution temperature for CO2 capture
    Xu, Zhicheng
    Wang, Shujuan
    Liu, Jinzhao
    Chen, Changhe
    [J]. 6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 64 - 71
  • [17] CO2 Capture and Enhanced Hydrogen Production Enabled by Low-Temperature Separation of PSA Tail Gas: A Detailed Exergy Analysis
    Berstad, David
    Straus, Julian
    Gundersen, Truls
    [J]. ENERGIES, 2024, 17 (05)
  • [18] Siderite decomposition at room temperature conditions for CO2 capture applications
    Mora Mendoza, Eduin Yesid
    Sarmiento Santos, Armando
    Vera Lopez, Enrique
    Drozd, Vadym
    Durygin, Andriy
    Chen, Jiuhua
    Saxena, Surendra K.
    [J]. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (02) : 351 - 359
  • [19] Siderite decomposition at room temperature conditions for CO2 capture applications
    Eduin Yesid Mora Mendoza
    Armando Sarmiento Santos
    Enrique Vera López
    Vadym Drozd
    Andriy Durygin
    Jiuhua Chen
    Surendra K. Saxena
    [J]. Brazilian Journal of Chemical Engineering, 2021, 38 : 351 - 359
  • [20] Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies
    Ji, Dong
    Wang, Jian
    Wang, Ke
    Li, Jingwei
    Meng, Wenliang
    Yang, Yong
    Li, Guixian
    Wang, Dongliang
    Zhou, Huairong
    [J]. Huagong Xuebao/CIESC Journal, 2022, 73 (10): : 4565 - 4575