Deep Learning for Urban Remote Sensing

被引:0
|
作者
Audebert, Nicolas [1 ,2 ]
Boulch, Alexandre [1 ]
Randrianarivo, Hicham [1 ,3 ]
Le Saux, Bertrand [1 ]
Ferecatu, Marin [3 ]
Lefevre, Sebastien [2 ]
Marlet, Renaud [4 ]
机构
[1] Off Natl Etud & Rech Aerosp, DTIM, F-91761 Palaiseau, France
[2] Univ Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France
[3] CNAM ParisTech, CEDRIC Lab, F-75141 Paris, France
[4] UPE, Ecole Ponts, UMR 8049, LIGM, Champs Sur Marne, France
关键词
ROBUST NORMAL ESTIMATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This work shows how deep learning techniques can benefit to remote sensing. We focus on tasks which are recurrent in Earth Observation data analysis. For classification and semantic mapping of aerial images, we present various deep network architectures and show that context information and dense labeling allow to reach better performances. For estimation of normals in point clouds, combining Hough transform with convolutional networks also improves the accuracy of previous frameworks by detecting hard configurations like corners. It shows that deep learning allows to revisit remote sensing and offers promising paths for urban modeling and monitoring.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Deep Learning in Remote Sensing
    Zhu, Xiao Xiang
    Tuia, Devis
    Mou, Lichao
    Xia, Gui-Song
    Zhang, Liangpei
    Xu, Feng
    Fraundorfer, Friedrich
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (04) : 8 - 36
  • [2] Deep learning decision fusion for the classification of urban remote sensing data
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (01):
  • [3] Semantic Segmentation of Urban Remote Sensing Images Based on Deep Learning
    Liu, Jingyi
    Wu, Jiawei
    Xie, Hongfei
    Xiao, Dong
    Ran, Mengying
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [4] Deep learning decision fusion for the classification of urban remote sensing data
    [J]. Abdi, Ghasem (ghasem.abdi@ut.ac.ir), 1600, SPIE (12):
  • [5] DeepLCZChange: A REMOTE SENSING DEEP LEARNING MODEL ARCHITECTURE FOR URBAN CLIMATE RESILIENCECRediT
    Sun, Wenlu
    Sun, Yao
    Liu, Chenying
    Albrecht, Conrad M.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3616 - 3619
  • [6] Deep Learning for Remote Sensing Applications
    Lee, Moung-Jin
    Lee, Won-Jin
    Lee, Seung-Kuk
    Jung, Hyung-Sup
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1581 - 1587
  • [7] A Deep Learning Framework Approach for Urban Area Classification Using Remote Sensing Data
    Nijhawan, Rahul
    Jindal, Radhika
    Sharma, Himanshu
    Raman, Balasubramanian
    Das, Josodhir
    [J]. PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 449 - 456
  • [8] Urban heat island distribution observation by integrating remote sensing technology and deep learning
    Lin, Huanuan
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2024,
  • [9] IDENTIFY URBAN AREA FROM REMOTE SENSING IMAGE USING DEEP LEARNING METHOD
    Guo, Jinxin
    Ren, Huazhong
    Zheng, Yitong
    Nie, Jing
    Chen, Shanshan
    Sun, Yuanheng
    Qin, Qiming
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7407 - 7410
  • [10] Deep Learning for Remote Sensing Image Understanding
    Zhang, Liangpei
    Xia, Gui-Song
    Wu, Tianfu
    Lin, Liang
    Tai, Xue Cheng
    [J]. JOURNAL OF SENSORS, 2016, 2016