DeepLCZChange: A REMOTE SENSING DEEP LEARNING MODEL ARCHITECTURE FOR URBAN CLIMATE RESILIENCECRediT

被引:0
|
作者
Sun, Wenlu [1 ]
Sun, Yao [1 ]
Liu, Chenying [1 ,2 ]
Albrecht, Conrad M. [2 ]
机构
[1] Tech Univ Munich, Data Sci Earth Observat, Munich, Germany
[2] German Aerosp Ctr, Remote Sensing Technol Inst, Cologne, Germany
关键词
urban planning; local climate zones; climate resilience; LiDAR; Landsat; 8; deep neural network architecture; explainable artificial intelligence;
D O I
10.1109/IGARSS52108.2023.10281573
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Urban land use structures impact local climate conditions of metropolitan areas. To shed light on the mechanism of local climate wrt. urban land use, we present a novel, data-driven deep learning architecture and pipeline, DeepLCZChange, to correlate airborne LiDAR data statistics with the Landsat 8 satellite's surface temperature product. A proof-of-concept numerical experiment utilizes corresponding remote sensing data for the city of New York to verify the cooling effect of urban forests.
引用
收藏
页码:3616 / 3619
页数:4
相关论文
共 50 条
  • [1] Deep Learning for Urban Remote Sensing
    Audebert, Nicolas
    Boulch, Alexandre
    Randrianarivo, Hicham
    Le Saux, Bertrand
    Ferecatu, Marin
    Lefevre, Sebastien
    Marlet, Renaud
    [J]. 2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [2] A new deep learning architecture for dehazing of aerial remote sensing images
    Abhi Kalra
    Aaron Sequeira
    Aditya Manjunath
    Shyam Lal
    Raghavendra BS
    [J]. Multimedia Tools and Applications, 2022, 81 : 43639 - 43655
  • [3] A new deep learning architecture for dehazing of aerial remote sensing images
    Kalra, Abhi
    Sequeira, Aaron
    Manjunath, Aditya
    Lal, Shyam
    Raghavendra, B. S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43639 - 43655
  • [4] Deep Learning in Remote Sensing
    Zhu, Xiao Xiang
    Tuia, Devis
    Mou, Lichao
    Xia, Gui-Song
    Zhang, Liangpei
    Xu, Feng
    Fraundorfer, Friedrich
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (04) : 8 - 36
  • [5] Deep learning decision fusion for the classification of urban remote sensing data
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (01):
  • [6] Semantic Segmentation of Urban Remote Sensing Images Based on Deep Learning
    Liu, Jingyi
    Wu, Jiawei
    Xie, Hongfei
    Xiao, Dong
    Ran, Mengying
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [7] Deep learning decision fusion for the classification of urban remote sensing data
    [J]. Abdi, Ghasem (ghasem.abdi@ut.ac.ir), 1600, SPIE (12):
  • [8] GrI-CNN: Granulated Deep Learning Model With Interpretable Architecture for Remote Sensing Image Classification
    Pal, Sankar
    Kumar, D. Arun
    Meher, Saroj
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [9] The design of deep learning framework and model for intelligent remote sensing
    Gong J.
    Zhang M.
    Hu X.
    Zhang Z.
    Li Y.
    Jiang L.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (04): : 475 - 487
  • [10] A DEEP LEARNING ARCHITECTURE FOR HETEROGENEOUS AND IRREGULARLY SAMPLED REMOTE SENSING TIME SERIES
    Avolio, Corrado
    Tricomi, Alessia
    Mammone, Claudio
    Zavagli, Massimo
    Costantini, Mario
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9807 - 9810