Deep Learning in Remote Sensing

被引:9
|
作者
Zhu, Xiao Xiang [1 ,2 ,3 ,4 ,5 ,6 ]
Tuia, Devis [7 ,8 ,9 ,10 ,11 ]
Mou, Lichao [2 ,6 ,12 ]
Xia, Gui-Song [13 ,14 ]
Zhang, Liangpei [15 ]
Xu, Feng [16 ,17 ]
Fraundorfer, Friedrich [18 ,19 ,20 ,21 ,22 ]
机构
[1] TUM, Signal Proc Earth Observat, Munich, Germany
[2] German Aerosp Ctr DLR, Cologne, Germany
[3] DLR, Remote Sensing Technol Inst, Team Signal Anal, Cologne, Germany
[4] Helmholtz Young Investigator Grp SiPEO, Munich, Germany
[5] DLR, Cologne, Germany
[6] TUM, Munich, Germany
[7] Univ Valencia, Valencia, Spain
[8] Univ Colorado, Boulder, CO 80309 USA
[9] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[10] Wageningen Univ, GeoInformat Sci & Remote Sensing Lab, Wageningen, Netherlands
[11] Univ Zurich, Zurich, Switzerland
[12] Univ Freiburg, Comp Vis Grp, Freiburg, Germany
[13] Wuhan Univ, Key Lab Informat Engn Surveying Mapping & Remote, Wuhan, Hubei, Peoples R China
[14] Paris Dauphine Univ, CNRS, Ctr Rech Math Decis, Paris, France
[15] Wuhan Univ, Wuhan, Hubei, Peoples R China
[16] Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
[17] Key Lab for Informat Sci Electromagnet Waves, Shanghai, Peoples R China
[18] Graz Univ Technol, Graz, Austria
[19] Univ Kentucky, Lexington, KY 40506 USA
[20] Univ N Carolina, Chapel Hill, NC USA
[21] Swiss Fed Inst Technol, Zurich, Switzerland
[22] Tech Univ Munich, Fac Civil Geo & Environm Engn, Munich, Germany
基金
瑞士国家科学基金会; 中国国家自然科学基金; 欧洲研究理事会;
关键词
CONVOLUTIONAL NEURAL-NETWORK; OBJECT DETECTION; HIGH-RESOLUTION; DATA-FUSION; SCENE CLASSIFICATION; VEHICLE DETECTION; IMAGE RETRIEVAL; SAR ATR; REPRESENTATION; FEATURES;
D O I
10.1109/MGRS.2017.2762307
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
引用
收藏
页码:8 / 36
页数:29
相关论文
共 50 条
  • [1] Deep Learning for Urban Remote Sensing
    Audebert, Nicolas
    Boulch, Alexandre
    Randrianarivo, Hicham
    Le Saux, Bertrand
    Ferecatu, Marin
    Lefevre, Sebastien
    Marlet, Renaud
    [J]. 2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [2] Deep Learning for Remote Sensing Applications
    Lee, Moung-Jin
    Lee, Won-Jin
    Lee, Seung-Kuk
    Jung, Hyung-Sup
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1581 - 1587
  • [3] Deep Learning for Remote Sensing Image Understanding
    Zhang, Liangpei
    Xia, Gui-Song
    Wu, Tianfu
    Lin, Liang
    Tai, Xue Cheng
    [J]. JOURNAL OF SENSORS, 2016, 2016
  • [4] Deep Learning and Remote Sensing Data Analysis
    Zhang L.
    Li Y.
    Hou Z.
    Li X.
    Geng H.
    Wang Y.
    Li J.
    Zhu P.
    Mei J.
    Jiang Y.
    Li S.
    Xin Q.
    Cui Y.
    Liu S.
    [J]. 1857, Editorial Board of Medical Journal of Wuhan University (45): : 1857 - 1864
  • [5] Compressed Remote Sensing by Using Deep Learning
    Mirrashid, Alireza
    Beheshti, Ali Asghar
    [J]. 2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 549 - 552
  • [6] REMOTE SENSING AND DEEP LEARNING FOR SUSTAINABLE MINING
    Ghamisi, Pedram
    Li, Hao
    Jackisch, Robert
    Rasti, Behnood
    Gloaguen, Richard
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3739 - 3742
  • [7] A review on deep learning in UAV remote sensing
    Osco, Lucas Prado
    Marcato Junior, Jose
    Marques Ramos, Ana Paula
    de Castro Jorge, Lucio Andre
    Fatholahi, Sarah Narges
    Silva, Jonathan de Andrade
    Matsubara, Edson Takashi
    Pistori, Hemerson
    Goncalves, Wesley Nunes
    Li, Jonathan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [8] Feature and Deep Learning in Remote Sensing Applications
    Ball, John E.
    Anderson, Derek T.
    Chan, Chee Seng
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 11
  • [9] Advanced Machine Learning and Deep Learning Approaches for Remote Sensing
    Jeon, Gwanggil
    [J]. REMOTE SENSING, 2023, 15 (11)
  • [10] Deep Hash Learning for Remote Sensing Image Retrieval
    Liu, Chao
    Ma, Jingjing
    Tang, Xu
    Liu, Fang
    Zhang, Xiangrong
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3420 - 3443