Risk aversion, fanning preference and volatility smirk on S&P 500 index options

被引:0
|
作者
Chen, Jian [1 ]
Ma, Chenghu [2 ,3 ]
机构
[1] Xiamen Univ, Sch Econ, Dept Finance, Xiamen, Fujian, Peoples R China
[2] Fudan Univ, Finance Res Ctr, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Recursive utility; fanning effect; jump risk; option smirk; INTERTEMPORAL RECURSIVE UTILITY; ASSET PRICING MODEL; MARKET; SUBSTITUTION; CONSUMPTION; UNCERTAINTY; BEHAVIOR; PREMIA; PRICES; HABIT;
D O I
10.1080/00036846.2015.1137548
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes a novel way of pricing S&P 500 index options in the presence of jump risk. Our analysis is built upon an equilibrium option pricing rule for a representative agent economy. In particular, we use the weighted utility's certainty equivalent to specify agent's risk preference, which displays a fanning-out characteristic. We find that the fanning effect captures a remarkably large portion of the total market risk premium implicit in options. As a result, the model with fanning effect generates pronounced volatility smirks.
引用
收藏
页码:3277 / 3292
页数:16
相关论文
共 50 条
  • [41] Trading behavior in S&P 500 index futures
    Smales, Lee A.
    REVIEW OF FINANCIAL ECONOMICS, 2016, 28 : 46 - 55
  • [42] Idiosyncratic volatility and cash flow volatility: New evidence from S&P 500
    Pae, Yuntaek
    Bae, Sung C.
    Lee, Namhoon
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2018, 56 : 127 - 135
  • [43] S&P 500 Index additions and earnings expectations
    Denis, DK
    McConnell, JJ
    Ovtchinnikov, AV
    Yu, Y
    JOURNAL OF FINANCE, 2003, 58 (05): : 1821 - 1840
  • [45] Cost of Equity and S&P 500 Index Revisions
    Baran, Lindsay
    Dolly King, Tao-Hsien
    FINANCIAL MANAGEMENT, 2012, 41 (02) : 457 - 481
  • [46] Extraction of the Essential Constituents of the S&P 500 Index
    Hashemi, Ray R.
    Ardakani, Omid M.
    Bahrami, Azita A.
    Young, Jeffrey A.
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 351 - 356
  • [47] Prediction of the S&P 500 index with neural networks
    Angstenberger, J
    NEURAL NETWORKS AND THEIR APPLICATIONS, 1996, : 143 - 152
  • [48] An explorative analysis of sentiment impact on S&P 500 components returns, volatility and downside risk
    Figa-Talamanca, Gianna
    Patacca, Marco
    ANNALS OF OPERATIONS RESEARCH, 2022, 342 (3) : 2095 - 2117
  • [49] Forecasting with Deep Learning: S&P 500 index
    Kamalov, Firuz
    Smail, Linda
    Gurrib, Ikhlaas
    2020 13TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2020), 2020, : 422 - 425
  • [50] Remarks on the Calculation of Earnings in the S&P 500 Index
    Keppler, Michael
    Xue, Xing-Hong
    JOURNAL OF INVESTING, 2011, 20 (03): : 15 - 17