Finding optimal neural networks for land use classification

被引:40
|
作者
Bischof, H [1 ]
Leonardis, A
机构
[1] Vienna Tech Univ, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
[2] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
来源
关键词
Gaussian maximum likelihood classifier; land use classification; minimum description length (MDL); multilayer perceptron; optimizing neural networks;
D O I
10.1109/36.655348
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this communications, we present a fully automatic and computationally efficient algorithm based on the minimum description length principle (MDL) for optimizing multilayer perceptron (MLP) classifiers. We demonstrate our method on the problem of multispectral Landsat image classification. We compare our results with a hand-designed MLP and a Gaussian maximum likelihood classifier, in which our method produces better classification accuracy with a smaller number of hidden units.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条
  • [41] Land Cover Classification Based on Double Scatterer Model and Neural Networks
    Karachristos, Konstantinos
    Anastassopoulos, Vassilis
    GEOMATICS, 2022, 2 (03): : 323 - 337
  • [42] Sparse Pixel Training of Convolutional Neural Networks for Land Cover Classification
    Laban, Noureldin
    Abdellatif, Bassam
    Ebeid, Hala M.
    Shedeed, Howida A.
    Tolba, Mohamed F.
    IEEE ACCESS, 2021, 9 : 52067 - 52078
  • [43] PolSAR Land Classification by Using Quaternion-Valued Neural Networks
    Shang, Fang
    Hirose, Akira
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 593 - 596
  • [44] The application of artificial neural networks to the problem of reservoir classification and land use determination on the basis of water sediment composition
    Swietlicka, Izabela
    Sujak, Agnieszka
    Muszynski, Siemowit
    Swietlicki, Michal
    ECOLOGICAL INDICATORS, 2017, 72 : 759 - 765
  • [45] Convolutional Neural Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series
    Simon Sanchez, Alejandro-Martin
    Gonzalez-Piqueras, Jose
    de la Ossa, Luis
    Calera, Alfonso
    REMOTE SENSING, 2022, 14 (21)
  • [46] Deep neural network ensembles for remote sensing land cover and land use classification
    Ekim, Burak
    Sertel, Elif
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (12) : 1868 - 1881
  • [47] Use of neural networks in radiometric studies of land surface parameters
    Natl Central Univ, Chungli, Taiwan
    Proc Natl Sci Counc Repub China Part A Phys Sci Eng, 4 (511-517):
  • [48] TRACK FINDING WITH NEURAL NETWORKS
    PETERSON, C
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1989, 279 (03): : 537 - 545
  • [49] Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks
    Zhang, Bin
    Wang, Cunpeng
    Shen, Yonglin
    Liu, Yueyan
    REMOTE SENSING, 2018, 10 (12)
  • [50] Application of Deep Convolution Neural Network in Automatic Classification of Land Use
    Ma, Xiaodong
    Yang, Guang
    Yang, Qunyi
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187