Finding optimal neural networks for land use classification

被引:40
|
作者
Bischof, H [1 ]
Leonardis, A
机构
[1] Vienna Tech Univ, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
[2] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
来源
关键词
Gaussian maximum likelihood classifier; land use classification; minimum description length (MDL); multilayer perceptron; optimizing neural networks;
D O I
10.1109/36.655348
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this communications, we present a fully automatic and computationally efficient algorithm based on the minimum description length principle (MDL) for optimizing multilayer perceptron (MLP) classifiers. We demonstrate our method on the problem of multispectral Landsat image classification. We compare our results with a hand-designed MLP and a Gaussian maximum likelihood classifier, in which our method produces better classification accuracy with a smaller number of hidden units.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条
  • [21] Land cover classification from MODIS satellite data using probabilistically optimal ensemble of artificial neural networks
    Mackin, Kenneth J.
    Nunohiro, Eiji
    Ohshiro, Masanori
    Yamasaki, Kazuko
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2006, 4253 : 820 - 826
  • [22] ARTIFICIAL NEURAL NETWORKS FOR LAND-COVER CLASSIFICATION AND MAPPING
    CIVCO, DL
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SYSTEMS, 1993, 7 (02): : 173 - 186
  • [23] Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification
    Minetto, Rodrigo
    Segundo, Mauricio Pamplona
    Sarkar, Sudeep
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6530 - 6541
  • [24] DEEP LEARNING NEURAL NETWORKS FOR LAND USE LAND COVER MAPPING
    Storie, Christopher D.
    Henry, Christopher J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3445 - 3448
  • [25] Land-use classification of gray-scale aerial images using probabilistic neural networks
    Ashish, D
    Hoogenboom, G
    McClendon, RW
    TRANSACTIONS OF THE ASAE, 2004, 47 (05): : 1813 - 1819
  • [26] Using different training strategies for urban land-use classification based on convolutional neural networks
    Qiu, Tianqi
    He, Huagui
    Liang, Xiaojin
    Chen, Fei
    Chen, Zhaoxia
    Liu, Yang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [27] Temporal generalization of an artificial neural network for land use/land cover classification
    Tolentino, Franciele M.
    Galo, Maria de Lourdes B. T.
    Christovam, Luiz E.
    Coladello, Leandro F.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS IX, 2018, 10790
  • [28] Optimal convergence rates of deep neural networks in a classification setting
    Meyer, Joseph T.
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3613 - 3659
  • [29] Optimal linear combination of neural networks for improving classification performance
    Ueda, N
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (02) : 207 - 215
  • [30] Forecasting land-use changes with the use of neural networks and GIS
    Vafeidis, A. T.
    Koukoulas, S.
    Gatsis, I.
    Gkoltsiou, K.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 5068 - 5071