Universal Quantum Computation with a Non-Abelian Topological Memory

被引:0
|
作者
Wootton, James R. [1 ]
Lahtinen, Ville [1 ]
Pachos, Jiannis K. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
关键词
STATES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An explicit lattice realization of a non-Abelian topological memory is presented. The correspondence between logical and physical states is seen directly by use of the stabilizer formalism. The resilience of the encoded states against errors is studied and compared to that of other memories. A set of non-topological operations are proposed to manipulate the encoded states, resulting in universal quantum computation. This work provides insight into the non-local encoding non-Abelian anyons provide at the microscopical level, with an operational characterization of the memories they provide.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [31] Universal reconnection of non-Abelian cosmic strings
    Eto, Minoru
    Hashimoto, Koji
    Marmorini, Giacomo
    Nitta, Muneto
    Ohashi, Keisuke
    Vinci, Walter
    PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [32] Non-Abelian topological excitations in spinor condensates
    Zhang, YB
    Mäkelä, H
    Suominen, KA
    CHINESE PHYSICS LETTERS, 2005, 22 (03) : 536 - 538
  • [33] Non-Abelian Topological Bound States in the Continuum
    Qian, Long
    Zhang, Weixuan
    Sun, Houjuan
    Zhang, Xiangdong
    PHYSICAL REVIEW LETTERS, 2024, 132 (04)
  • [34] Splitting the Topological Degeneracy of Non-Abelian Anyons
    Bonderson, Parsa
    PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [35] Non-Abelian extensions of topological lie algebras
    Neeb, KH
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 991 - 1041
  • [36] Topological features in non-Abelian gauge theory
    Malik, RP
    MODERN PHYSICS LETTERS A, 1999, 14 (28) : 1937 - 1949
  • [37] NON-ABELIAN TOPOLOGICAL SOLUTIONS IN STRINGY GRAVITY
    GALTSOV, DV
    DONETS, EE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1994, 3 (04): : 755 - 771
  • [38] Non-Abelian bosonization of topological insulators and superconductors
    Huang, Yen-Ta
    Lee, Dung-Hai
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [39] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [40] Productivity of sequences in non-abelian topological groups
    Spevak, Jan
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 163 - 177