Universal Quantum Computation with a Non-Abelian Topological Memory

被引:0
|
作者
Wootton, James R. [1 ]
Lahtinen, Ville [1 ]
Pachos, Jiannis K. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
关键词
STATES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An explicit lattice realization of a non-Abelian topological memory is presented. The correspondence between logical and physical states is seen directly by use of the stabilizer formalism. The resilience of the encoded states against errors is studied and compared to that of other memories. A set of non-topological operations are proposed to manipulate the encoded states, resulting in universal quantum computation. This work provides insight into the non-local encoding non-Abelian anyons provide at the microscopical level, with an operational characterization of the memories they provide.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [21] Universal topological data for gapped quantum liquids in three dimensions and fusion algebra for non-Abelian string excitations
    Moradi, Heidar
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2015, 91 (07):
  • [22] Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
    Papic, Z.
    Bernevig, B. A.
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [23] THE TOPOLOGICAL MEANING OF NON-ABELIAN ANOMALIES
    ALVAREZGAUME, L
    GINSPARG, P
    NUCLEAR PHYSICS B, 1984, 243 (03) : 449 - 474
  • [24] Non-Abelian Fractionalization in Topological Minibands
    Reddy, Aidan P.
    Paul, Nisarga
    Abouelkomsan, Ahmed
    Fu, Liang
    Physical Review Letters, 2024, 133 (16)
  • [25] Merging quantum loop gases: A route to non-Abelian topological phases
    Paredes, Belen
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [26] Distinguishing between non-abelian topological orders in a quantum Hall system
    Dutta, Bivas
    Yang, Wenmin
    Melcer, Ron
    Kundu, Hemanta Kumar
    Heiblum, Moty
    Umansky, Vladimir
    Oreg, Yuval
    Stern, Ady
    Mross, David
    SCIENCE, 2022, 375 (6577) : 193 - +
  • [27] Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions
    Faoro, L
    Siewert, J
    Fazio, R
    PHYSICAL REVIEW LETTERS, 2003, 90 (02) : 1 - 028301
  • [28] Topological properties of Abelian and non-Abelian quantum Hall states classified using patterns of zeros
    Wen, Xiao-Gang
    Wang, Zhenghan
    PHYSICAL REVIEW B, 2008, 78 (15):
  • [29] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [30] Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States
    Liu, Zhao
    Moeller, Gunnar
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2017, 119 (10)