Two-phase transition of Li-intercalation compounds in Li-ion batteries

被引:139
|
作者
Li, De [1 ]
Zhou, Haoshen [1 ,2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Energy Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
关键词
ENERGY-LOSS SPECTROSCOPY; SOLID-SOLUTION PHASES; DOMINO-CASCADE MODEL; X-RAY-DIFFRACTION; LITHIUM-ION; ROOM-TEMPERATURE; LIFEPO4; NANOPARTICLES; ELECTRONIC-STRUCTURE; DISCHARGE PROCESSES; SPINEL LI4+XTI5O12;
D O I
10.1016/j.mattod.2014.06.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among all electrode materials, olivine LiFePO4 and spinel Li4Ti5O12 are well-known for their two-phase structure, characterized by a flat voltage plateau. The phase transition in olivine LiFePO4 may be modeled in single particle and many-particle systems at room temperature, based on the thermodynamic phase diagram which is easily affected by coherency strain and the size effect. Some metastable and transient phases in the phase diagram can also be detected during non-equilibrium electrochemical processes. In comparison to olivine LiFePO4, spinel Li4Ti5O12 possesses a 'zero strain' property and performs Li-site switching during the phase transition, which lead to a different phase structure. Here, the phase transitions of olivine LiFePO4 and spinel Li4Ti5O12 are systematically reviewed, and the concepts discussed may be extended to other two-phase Li-intercalation compounds in Li-ion batteries.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 50 条
  • [41] Efficient optimization of the Li-ion conductivity of borovanadate glass materials for Li-ion batteries
    Moustafa, M. G.
    Saron, K. M. A.
    Saad, Mohamed
    Alqahtani, Mohammed S.
    Qasem, Ammar
    Hassanien, Ahmed Saeed
    SOLID STATE SCIENCES, 2023, 141
  • [42] Solvent-Mediated, Reversible Ternary Graphite Intercalation Compounds for Extreme-Condition Li-Ion Batteries
    Tao, Lei
    Xia, Dawei
    Sittisomwong, Poom
    Zhang, Hanrui
    Lai, Jianwei
    Hwang, Sooyeon
    Li, Tianyi
    Ma, Bingyuan
    Hu, Anyang
    Min, Jungki
    Hou, Dong
    Shah, Sameep Rajubhai
    Zhao, Kejie
    Yang, Guang
    Zhou, Hua
    Li, Luxi
    Bai, Peng
    Shi, Feifei
    Lin, Feng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (24) : 16764 - 16774
  • [43] Polypyrrole Nanopipes as a Promising Cathode Material for Li-ion Batteries and Li-ion Capacitors: Two-in-One Approach
    Dubal, Deepak
    Jagadale, Ajay
    Chodankar, Nilesh R.
    Kim, Do-Heyoung
    Gomez-Romero, Pedro
    Holze, Rudolf
    ENERGY TECHNOLOGY, 2019, 7 (02) : 193 - 200
  • [44] Scaling analysis of mosaic phase separation in Li-ion batteries
    Zhuang, Debbie
    Bazant, Martin Z.
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [45] Scientists Bulletproof Li-Ion Batteries
    不详
    CHEMICAL ENGINEERING PROGRESS, 2015, 111 (02) : 12 - 13
  • [46] Nanomaterials Meet Li-ion Batteries
    Kwon, Nam Hee
    Brog, Jean-Pierre
    Maharajan, Sivarajakumar
    Crochet, Aurelien
    Fromm, Katharina M.
    CHIMIA, 2015, 69 (12) : 734 - 736
  • [47] LI-ION BATTERIES ARE GETTING A MAKEOVER
    不详
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (10) : 4 - 5
  • [48] Sulfides for Li-ion batteries and beyond
    Wang, Chunsheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [49] Capacity Estimation for Li-ion Batteries
    Tang, Xidong
    Mao, Xiaofeng
    Lin, Jian
    Koch, Brian
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 947 - 952
  • [50] Li-ion Batteries and the Electrification of the Fleet
    Camp, Daniel V.
    Vey, Nathan L.
    Kylander, Paul W.
    Auld, Sean G.
    Willis, Jerald J.
    Lussier, Jonathan F.
    Eldred, Ross A.
    Van Bossuyt, Douglas L.
    NAVAL ENGINEERS JOURNAL, 2023, 135 (01) : 169 - 184